A deterministic algorithm for counting colorings with 2Δ colors

06/04/2019
by   Alistair Sinclair, et al.
0

We give a polynomial time deterministic approximation algorithm (an FPTAS) for counting the number of q-colorings of a graph of maximum degree Δ, provided only that q> 2Δ. This substantially improves on previous deterministic algorithms for this problem, the best of which requires q> 2.58Δ, and matches the natural bound for randomized algorithms obtained by a straightforward application of Markov chain Monte Carlo. In the special case when the graph is also triangle-free, we show that our algorithm applies under the condition q ≥αΔ + β, where α≈ 1.764 and β = β(α) are absolute constants. Our result applies more generally to list colorings, and to the partition function of the anti-ferromagnetic Potts model. Our algorithm exploits the so-called "polynomial interpolation" method of Barvinok, identifying a suitable region of the complex plane in which the Potts model partition function has no zeros. Interestingly, our method for identifying this zero-free region leverages probabilistic and combinatorial ideas that have been used in the analysis of Markov chains.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset