A Deterministic Algorithm for Computing the Weight Distribution of Polar Codes

by   Hanwen Yao, et al.

We present a deterministic algorithm for computing the entire weight distribution of polar codes. As the first step, we derive an efficient recursive procedure to compute the weight distributions that arise in successive cancellation decoding of polar codes along any decoding path. This solves the open problem recently posed by Polyanskaya, Davletshin, and Polyanskii. Using this recursive procedure, we can compute the entire weight distribution of certain polar cosets in time O(n^2). Any polar code can be represented as a disjoint union of such cosets; moreover, this representation extends to polar codes with dynamically frozen bits. This implies that our methods can be also used to compute the weight distribution of polar codes with CRC precoding, of polarization-adjusted convolutional (PAC) codes and, in fact, general linear codes. However, the number of polar cosets in such representation scales exponentially with a parameter introduced herein, which we call the mixing factor. To reduce the exponential complexity of our algorithm, we make use of the fact that polar codes have a large automorphism group, which includes the lower-triangular affine group LTA(m,2). We prove that LTA(m,2) acts transitively on certain sets of monomials, thereby drastically reducing the number of polar cosets we need to evaluate. This complexity reduction makes it possible to compute the weight distribution of any polar code of length up to n=128.


page 1

page 2

page 3

page 4


Weight Distributions for Successive Cancellation Decoding of Polar Codes

In this paper, we derive the exact weight distributions for the successi...

On the Automorphism Group of Polar Codes

The automorphism group of a code is the set of permutations of the codew...

On Convolutional Precoding in PAC Codes

Polarization-adjusted convolutional (PAC) codes are special concatenated...

Polar Codes Do Not Have Many Affine Automorphisms

Polar coding solutions demonstrate excellent performance under the list ...

Sphere Constraint based Enumeration Methods to Analyze the Minimum Weight Distribution of Polar Codes

In this paper, the minimum weight distributions (MWDs) of polar codes an...

On the Closed-form Weight Enumeration of Polar Codes: 1.5d-weight Codewords

The weight distribution of error correction codes is a critical determin...

Countably Infinite Multilevel Source Polarization for Non-Stationary Erasure Distributions

Polar transforms are central operations in the study of polar codes. Thi...

Please sign up or login with your details

Forgot password? Click here to reset