A Deterministic Algorithm for Balanced Cut with Applications to Dynamic Connectivity, Flows, and Beyond

10/17/2019
by   Julia Chuzhoy, et al.
0

We consider the classical Minimum Balanced Cut problem: given a graph G, compute a partition of its vertices into two subsets of roughly equal volume, while minimizing the number of edges connecting the subsets. We present the first deterministic, almost-linear time approximation algorithm for this problem. Our algorithm in fact provides a stronger guarantee: it either returns a balanced cut whose value is close to a given target value, or it certifies that such a cut does not exist by exhibiting a large subgraph of G that has high conductance. We use this algorithm to obtain deterministic algorithms for dynamic connectivity and minimum spanning forest, whose worse-case update time on an n-vertex graph is n^o(1), thus resolving a major open problem in the area of dynamic graph algorithms. Our work also implies deterministic algorithms for a host of additional problems, whose time complexities match, up to subpolynomial in n factors, those of known randomized algorithms. The implications include almost-linear time deterministic algorithms for solving Laplacian systems and for approximating maximum flows in undirected graphs.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset