A Densely Connected Criss-Cross Attention Network for Document-level Relation Extraction

03/26/2022
by   Liang Zhang, et al.
0

Document-level relation extraction (RE) aims to identify relations between two entities in a given document. Compared with its sentence-level counterpart, document-level RE requires complex reasoning. Previous research normally completed reasoning through information propagation on the mention-level or entity-level document-graph, but rarely considered reasoning at the entity-pair-level.In this paper, we propose a novel model, called Densely Connected Criss-Cross Attention Network (Dense-CCNet), for document-level RE, which can complete logical reasoning at the entity-pair-level. Specifically, the Dense-CCNet performs entity-pair-level logical reasoning through the Criss-Cross Attention (CCA), which can collect contextual information in horizontal and vertical directions on the entity-pair matrix to enhance the corresponding entity-pair representation. In addition, we densely connect multiple layers of the CCA to simultaneously capture the features of single-hop and multi-hop logical reasoning.We evaluate our Dense-CCNet model on three public document-level RE datasets, DocRED, CDR, and GDA. Experimental results demonstrate that our model achieves state-of-the-art performance on these three datasets.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro