A DEIM driven reduced basis method for the diffuse Stokes/Darcy model, applied to inverse subsurface characterization of in-situ leach mining
In this article, we develop a reduced basis method for efficiently solving the coupled Stokes/Darcy equations with parametric internal geometry. To accommodate the change in topology, we define the Stokes and Darcy domains implicitly via a phase-field indicator function. In our reduced order model, we approximate the parameter-dependent phase-field function with a discrete empirical interpolation method (DEIM) that enables affine decomposition of the associated linear and bilinear forms. In addition, we introduce a modification of DEIM that leads to positivity-preserving approximations, thus guaranteeing positive-definiteness of the system matrix. We also present a strategy for determining the required number of DEIM modes for a given number of reduced basis functions. We couple reduced basis functions on neighboring patches to enable the efficient simulation of large-scale problems that consist of repetitive subdomains. We apply our reduced basis framework to efficiently solve the inverse problem of characterizing the subsurface damage state of a complete in-situ leach mining site.
READ FULL TEXT