A Deep Learning Approach to Automate High-Resolution Blood Vessel Reconstruction on Computerized Tomography Images With or Without the Use of Contrast Agent

02/09/2020 ∙ by Anirudh Chandrashekar, et al. ∙ 0

Existing methods to reconstruct vascular structures from a computed tomography (CT) angiogram rely on injection of intravenous contrast to enhance the radio-density within the vessel lumen. However, pathological changes can be present in the blood lumen, vessel wall or a combination of both that prevent accurate reconstruction. In the example of aortic aneurysmal disease, a blood clot or thrombus adherent to the aortic wall within the expanding aneurysmal sac is present in 70-80 extraction of vital clinically relevant information by current methods. In this study, we implemented a modified U-Net architecture with attention-gating to establish a high-throughput and automated segmentation pipeline of pathological blood vessels in CT images acquired with or without the use of a contrast agent. Twenty-six patients with paired non-contrast and contrast-enhanced CT images within the ongoing Oxford Abdominal Aortic Aneurysm (OxAAA) study were randomly selected, manually annotated and used for model training and evaluation (13/13). Data augmentation methods were implemented to diversify the training data set in a ratio of 10:1. The performance of our Attention-based U-Net in extracting both the inner lumen and the outer wall of the aortic aneurysm from CT angiograms (CTA) was compared against a generic 3-D U-Net and displayed superior results. Subsequent implementation of this network architecture within the aortic segmentation pipeline from both contrast-enhanced CTA and non-contrast CT images has allowed for accurate and efficient extraction of the entire aortic volume. This extracted volume can be used to standardize current methods of aneurysmal disease management and sets the foundation for subsequent complex geometric and morphological analysis. Furthermore, the proposed pipeline can be extended to other vascular pathologies.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 3

page 5

page 6

page 7

page 8

page 10

page 12

page 14

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.