A Deep Learning Approach for Air Pollution Forecasting in South Korea Using Encoder-Decoder Networks & LSTM

04/21/2018 ∙ by Tien-Cuong Bui, et al. ∙ 0

Tackling air pollution is an imperative problem in South Korea, especially in urban areas, over the last few years. More specially, South Korea has joined the ranks of the world's most polluted countries alongside with other Asian capitals, such as Beijing or Delhi. Much research is being conducted in environmental science to evaluate the dangerous impact of particulate matters on public health. Besides that, deterministic models of air pollutant behavior are also generated; however, this is both complex and often inaccurate. On the contrary, deep recurrent neural network reveals potent potential on forecasting out-comes of time-series data and has become more prevalent. This paper uses Recurrent Neural Network (RNN) with Long Short-Term Memory units as a framework for leveraging knowledge from time-series data of air pollution and meteorological information in Daegu, Seoul, Beijing, and Shenyang. Additionally, we use encoder-decoder model, which is similar to machine comprehension problems, as a crucial part of our prediction machine. Finally, we investigate the prediction accuracy of various configurations. Our experiments prevent the efficiency of integrating multiple layers of RNN on prediction model when forecasting far timesteps ahead. This research is a significant motivation for not only continuing researching on urban air quality but also help the government leverage that insight to enact beneficial policies



There are no comments yet.


page 1

page 3

page 4

page 7

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.