A Data-driven Approach to Multi-event Analytics in Large-scale Power Systems Using Factor Model

12/24/2017
by   Fan Yang, et al.
0

Multi-event detection and recognition in real time is of challenge for a modern grid as its feature is usually non-identifiable. Based on factor model, this paper porposes a data-driven method as an alternative solution under the framework of random matrix theory. This method maps the raw data into a high-dimensional space with two parts: 1) the principal components (factors, mapping event signals); and 2) time series residuals (bulk, mapping white/non-Gaussian noises). The spatial information is extracted form factors, and the termporal infromation from residuals. Taking both spatial-tempral correlation into account, this method is able to reveal the multi-event: its components and their respective details, e.g., occurring time. Case studies based on the standard IEEE 118-bus system validate the proposed method.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro