A+D-Net: Shadow Detection with Adversarial Shadow Attenuation

12/04/2017
by   Hieu Le, et al.
1

Single image shadow detection is a very challenging problem because of the limited amount of information available in one image, as well as the scarcity of annotated training data. In this work, we propose a novel adversarial training based framework that yields a high performance shadow detection network (D-Net). D-Net is trained together with an Attenuator network (A-Net) that generates adversarial training examples. A-Net performs shadow attenuation in original training images constrained by a simplified physical shadow model and focused on fooling D-Net's shadow predictions. Hence, it is effectively augmenting the training data for D-Net with hard to predict cases. Experimental results on the most challenging shadow detection benchmark show that our method outperforms the state-of-the-art with a 38 of balanced error rate (BER). Our proposed shadow detector also obtains state-of-the-art results on a cross-dataset task testing on UCF with a 14 error reduction. Furthermore, the proposed method can perform accurate close to real-time shadow detection at a rate of 13 frames per second.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro