Log In Sign Up

A Critical and Moving-Forward View on Quantum Image Processing

by   Fei Yan, et al.

Physics and computer science have a long tradition of cross-fertilization. One of the latest outcomes of this mutually beneficial relationship is quantum information science, which comprises the study of information processing tasks that can be accomplished using quantum mechanical systems. Quantum Image Processing (QIMP) is an emergent field of quantum information science whose main goal is to strengthen our capacity for storing, processing, and retrieving visual information from images and video either by transitioning from digital to quantum paradigms or by complementing digital imaging with quantum techniques. The expectation is that harnessing the properties of quantum mechanical systems in QIMP will result in the realization of advanced technologies that will outperform, enhance or complement existing and upcoming digital technologies for image and video processing tasks.


page 8

page 11


Image Processing in Quantum Computers

Quantum Image Processing (QIP) is an exiting new field showing a lot of ...

A Quantum Edge Detection Algorithm

The application of quantum computing to the field of image processing ha...

Proceedings 17th International Conference on Quantum Physics and Logic

This volume contains the proceedings of the 17th International Conferenc...

Algebraic Image Processing

We propose an approach to image processing related to algebraic operator...

Fast and Accurate Linear Fitting for Incompletely Sampled Gaussian Function With a Long Tail

Fitting experiment data onto a curve is a common signal processing techn...

Revisiting the Properties of Money

The properties of money commonly referenced in the economics literature ...

Quantum Psychothotonix

IMAGES are the building blocks of reality. External images are made up o...


  • (1) Nielsen MA and Chuang IL. Quantum Computatation and Quantum Information. Cambridge: Cambridge University Press, 2000
  • (2) Yan F and Venegas-Andraca SE. Quantum Image Processing. Berlin: Springer-Verlag, 2020
  • (3) Ryou H, Yaqub M, Cavallaro A, Papageorghiou AT, and Noble JA. Automated 3D ultrasound image analysis for first trimester assessment of fetal health. Physics in Medicine & Biology, 64(18): 185010, 2019
  • (4) Chen CH. Computer Vision in Medical Imaging. Singapore: World Scientific, 2014
  • (5)

    Saponara S. Radar real-time image processing for machine perception. Proceedings of SPIE 10996, Real-Time Image Processing and Deep Learning, 109960N, 2019

  • (6) Uhlmann J. A canonical image set for examining and comparing image processing algorithms. Journal of Image and Graphics, 6(2): 137–144, 2018
  • (7) Batchelor BG. Machine Vision Handbook. Berlin: Springer-Verlag, 2014
  • (8) Radke RJ. Computer Vision for Visual Effects. Cambridge: Cambridge University Press, 2012
  • (9) Lanzagorta M. Quantum Radar. San Rafael: Morgan and Claypool (Synthesis Lectures on Quantum Computing), 2011
  • (10) Venegas-Andraca SE and Ball JL. Processing images in entangled quantum systems. Quantum Information Processing, 9(1): 1–11, 2010
  • (11) Yuan S., Mao X., Li T., Xue Y., Chen L., and Xiong Q. Quantum morphology operations based on quantum representation model. Quantum Information Processing, 14: 1625, 2015
  • (12) Caraiman S and Manta V. Image segmentation on a quantum computer. Quantum Information Processing, 14: 1693, 2015
  • (13) El-Latif AAA , Abd-El-Atty B, and Talha M. Robust encryption of quantum medical images. IEEE Access, 6: 1073–1081, 2018
  • (14) Yan F, Jiao S, Iliyasu AM, and Jiang Z. Chromatic framework for quantum movies and applications in creating montages. Frontiers of Computer Science, 12(4): 736–748, 2018
  • (15) Venegas-Andraca SE and Bose S. Quantum computation and image processing: New trends in artificial intelligence. Proceedings of the International Conference on Artificial Intelligence (IJCAI), 1563-1564, 2003
  • (16) Venegas-Andraca SE and Bose S. Storing, processing, and retrieving an image using quantum mechanics. SPIE Conference of Quantum Information and Computation, 5105: 137–147, 2003
  • (17) Venegas-Andraca SE. Discrete Quantum Walks and Quantum Image Processing. DPhil Thesis, The University of Oxford, United Kingdom, 2005
  • (18) Yan F, Iliyasu AM, and Le PQ. Quantum image processing: A review of advances in its security technologies. International Journal of Quantum Information, 15(3): 1730001, 2017
  • (19) Venegas-Andraca SE. Quantum walks: a comprehensive review. Quantum Information Processing, 11(5): 1015-1106, 2012
  • (20) Rosenfeld A. Picture processing by computer. ACM Computing Surveys, 1(3): 147-174, 1969
  • (21) Rosenfeld A. Progress in picture processing by computer: 1969-1971. ACM Computing Surveys, 1(3): 147-174, 1969
  • (22) Lugiato LA, Gatti A, and Brambilla E. Quantum imaging. Journal of Optics B: Quantum and Semiclassical Optics, 4(3): S176–S183, 2002
  • (23) Shih Y. Quantum imaging. IEEE Journal of Selected Topics in Quantum Electronics, 13(4): 1016–1030, 2007.
  • (24) Genovese M. Real applications of quantum imaging. Journal of Optics, 18(7): 073002, 2016
  • (25) Defienne H, Reichert M, Fleischer JW, and Faccio D. Quantum image distillation. Science Advances, 5(10): eaax0307, 2019
  • (26) Fiete RD. Formation of a digital image: the imaging chain simplified. Bellingham: SPIE, 2012
  • (27) Yan F, Iliyasu AM, and Venegas-Andraca SE. A survey of quantum image representations, Quantum Information Processing, 15: 1–35, 2016
  • (28) Le PQ, Dong F, and Hirota K. A flexible representation of quantum images for polynomial preparation, image compression, and processing operations, Quantum Information Processing, 10: 63–84, 2011
  • (29) Zhang Y, Lu K, Gao Y, and Wang M. NEQR: a novel enhanced quantum representation of digital images. Quantum Information Processing, 12: 2833–2860, 2013
  • (30) Banaszek K, Cramer M, and Gross D. Focus issue on quantum tomography (31 articles). New Journal of Physics, 14-15: 125020, 2012-2013
  • (31) Grigoryan AM and Agaian Sos S. New look on quantum representation of images: Fourier transform representation. Quantum Information Processing 19:148, 2020
  • (32) Youssry A, Ferrie C, and Tomamichel M. Efficient online quantum state estimation using a matrix-exponentiated gradient method. New Journal of Physics 21: 033006, 2019
  • (33) Du S, Qiu D, Mateus P, and Gruska J. Enhanced double random phase encryption of quantum images. Results in Physics, 13: 102161, 2019
  • (34) Jiang N, Zhao N, and Wang L. LSB based quantum image steganography algorithm. International Journal of Theoretical Physics, 55(1): 107–123, 2016
  • (35) Acar A, Aksu H, Uluagac AS, and Conti M. A survey on homomorphic encryption schemes: theory and implementation. ACM Computer Surveys, 51(4): 1–35, 2018
  • (36) Szeliski R. Computer Vision: Algorithms and Applications. Berlin: Springer, 2010
  • (37) Corke P. Robotics, Vision and Control: Fundamental Algorithms In MATLAB, 2nd Edition. Berlin: Springer, 2017
  • (38) Bishop C. Pattern Recognition and Machine Learning. Berlin: Springer, 2011
  • (39) Yu C, Gao F, Liu C, Huynh D, Reynolds M, and Wang J. Quantum algorithm for visual tracking. Physical Review A, 99: 022301, 2019
  • (40) Trugenberger CA. Quantum pattern recognition. Quantum Information Processing, 1(6): 471–493, 2002
  • (41) Kiani BT, Villanyi A, and Lloyd S. Quantum Medical Imaging Algorithms. arXiv:2004.02036v3 [quant-ph]
  • (42) Farhi E, Goldstone J, and Gutmann S. A quantum approximate optimization algorithm. arXiv e-prints, arXiv:1411.4028, 2014
  • (43) McClean JR, Romero J, Babbush R, and Aspuru-Guzik A. The theory of variational hybrid quantum-classical algorithms. New Journal of Physics, 18: 023023, 2016
  • (44) Biamonte J. Universal variational quantum computation. arXiv e-prints, arXiv:1903.04500, 2019
  • (45) Aïmeur E, Brassard G, and Gambs S. Quantum clustering algorithms. In Proceedings of the 24th International Conference on Machine Learning (ICML), 1–8, New York, USA, 2007
  • (46) Horn D and Gottlieb A. Algorithm for data clustering in pattern recognition problems based on quantum mechanics. Physical Review Letters, 88(1): 018702, 2001
  • (47)

    Neukart F, Dollen DV, and Seidel C. Quantum-assisted cluster analysis on a quantum annealing device. Frontiers in Physics,

    6(55): 1–6, 2018
  • (48) Murty MN, Jain AK, and Flynn PJ. Data clustering: A review. ACM Computing Surveys, 31(3): 265–323, 1999
  • (49) Guojun G, Chaoqun M, and Jianhong W. Data Clustering: Theory, Algorithms, and Applications. Philadelphia: SIAM, 2007
  • (50)

    Childs AM, Cleve R, Deotto E, Farhi E, Gutmann S, and Spielman D. Exponential algorithmic speedup by quantum walk. Proceedings of the 35th ACM Symposium on The Theory of Computation (STOC), 59–68, 2003

  • (51) McGeoch C. A Guide to Experimental Algorithmics. Cambridge: Cambridge University Press, 2012
  • (52) Serra J. Image analysis and mathematical morphology (vols. 1 and 2). London: Academic Press, 1984
  • (53) Duda R. and Hart P. Pattern Classification and Scene Analysis. John Wiley and Sons, 271272, 1973
  • (54) Sobel I. An Isotropic 3 3 Image Gradient Operator (History and Definition of the Sobel Operator). (retrieved on 07/Feb/2020), 2014
  • (55) Canny J. A Computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(6): 679–698, 1986
  • (56) Zhang Y, Lu K, and Gao Y. QSobel: A novel quantum image edge extraction algorithm. Science China Information Sciences, 58: 1–13, 2015.
  • (57) Page L and Brin S, Motwani R, and Winograd T. The PageRank Citation Ranking: Bringing Order to the Web. Tech. Rep. 1999-66. Stanford InfoLab, 1999
  • (58) Bryan K. and Leise T. The $25,000,000,000 Eigenvector: The Linear Algebra behind Google. SIAM Review, 48(3): 569–581, 2006
  • (59) Langville AN and Meyer CD. Google’s PageRank and Beyond: The Science of Search Engine Rankings. Princeton: Princeton University Press, 2006
  • (60)

    Wilkinson JH. The Algebraic Eigenvalue Problem (1st Ed). Oxford: Oxford University Press, 1965

  • (61) Gobul GH and Van Loan CF. Matrix Computations 1st Ed). Baltimore: Johns Hopkins University Press, 1983
  • (62) Press WH, Teukolsky SA, Vetterling WT, and Flannery BP. Numerical Recipes in C (2nd Ed). Cambridge: Cambridge University Press, 1992
  • (63) Pan, VY and Chen ZQ. The complexity of the matrix eigenproblem. Proceedings of the 31st Annual ACM Symposium on Theory of Computing, 507–516, 1999
  • (64) Sarma AD, Molla AR, Pandurangan G, and Upfal E. Fast distributed PageRank computation. Theoretical Computer Science, 561: 113–121, 2015
  • (65) Paparo GD and Martin-Delgado MA. Google in a Quantum Network. Scientific Reports, 2: 444, 2012
  • (66) Paparo GD, Müller M, Comellas F, and Martin-Delgado MA. Quantum Google in a Complex Network. Scientific Reports, 3: 2773, 2013
  • (67) Loke T, Tang JW, Rodriguez J, Small M, and Wang JB. Comparing classical and quantum PageRanks. Quantum Information Processing, 16: 25, 2017
  • (68) Hu W, Zhou R, El-Rafei A, and Jiang S. Quantum image watermarking algorithm based on Haar Wavelet Transform. IEEE Access, 7: 121303–121320, 2019
  • (69) Yang YG, Pan QX, Sun SJ, and Xu P. Novel image encryption based on quantum walks, Scientific reports, 5: 7784, 2015
  • (70) Abd El-Latif AA, Abd-El-Atty B, and Venegas-Andraca SE. A novel image steganography technique based on quantum substitution boxes. Optics and Laser Technology, 116: 92–102, 2019
  • (71) Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N, and Lloyd S. Quantum machine learning, Nature, 549: 195–202, 2017
  • (72) Venegas-Andraca SE, Cruz-Santos W, McGeoch C, and Lanzagorta M. A cross-disciplinary introduction to quantum annealing-based algorithms, Contemporary Physics, 59(2): 174-197, 2018
  • (73) Cruz-Santos W, Venegas-Andraca SE, and Lanzagorta, M. A QUBO formulation of minimum multicut problem instances in trees for D-Wave quantum annealers, Scientific Reports, 9: 17216, 2019
  • (74) Co H, Peña Tapia E, Tanetani N, Arias Zapata JP, García Sánchez-Carnerero L. Quantum Image Processing using QISKIT. (retrieved on 10 Feb 2020).