A Coordinate-wise Optimization Algorithm for Sparse Inverse Covariance Selection

11/19/2017
by   Ganzhao Yuan, et al.
0

Sparse inverse covariance selection is a fundamental problem for analyzing dependencies in high dimensional data. However, such a problem is difficult to solve since it is NP-hard. Existing solutions are primarily based on convex ℓ_1 approximation and iterative hard thresholding, which only lead to sub-optimal solutions. In this work, we propose a coordinate-wise optimization algorithm to solve this problem which is guaranteed to converge to a coordinate-wise minimum point. The algorithm iteratively and greedily selects one variable or swaps two variables to identify the support set, and then solves a reduced convex optimization problem over the support set to achieve the greatest descent. As a side contribution of this paper, we propose a Newton-like algorithm to solve the reduced convex sub-problem. Finally, we demonstrate the efficacy of our method on synthetic data and real-world data sets. As a result, the proposed method achieves state-of-the-art performance in term of accuracy.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset