A Contextual Latent Space Model: Subsequence Modulation in Melodic Sequence
Some generative models for sequences such as music and text allow us to edit only subsequences, given surrounding context sequences, which plays an important part in steering generation interactively. However, editing subsequences mainly involves randomly resampling subsequences from a possible generation space. We propose a contextual latent space model (CLSM) in order for users to be able to explore subsequence generation with a sense of direction in the generation space, e.g., interpolation, as well as exploring variations – semantically similar possible subsequences. A context-informed prior and decoder constitute the generative model of CLSM, and a context position-informed encoder is the inference model. In experiments, we use a monophonic symbolic music dataset, demonstrating that our contextual latent space is smoother in interpolation than baselines, and the quality of generated samples is superior to baseline models. The generation examples are available online.
READ FULL TEXT