DeepAI AI Chat
Log In Sign Up

A Constrained Coupled Matrix-Tensor Factorization for Learning Time-evolving and Emerging Topics

by   Sanaz Bahargam, et al.
Boston University
University of California, Riverside

Topic discovery has witnessed a significant growth as a field of data mining at large. In particular, time-evolving topic discovery, where the evolution of a topic is taken into account has been instrumental in understanding the historical context of an emerging topic in a dynamic corpus. Traditionally, time-evolving topic discovery has focused on this notion of time. However, especially in settings where content is contributed by a community or a crowd, an orthogonal notion of time is the one that pertains to the level of expertise of the content creator: the more experienced the creator, the more advanced the topic. In this paper, we propose a novel time-evolving topic discovery method which, in addition to the extracted topics, is able to identify the evolution of that topic over time, as well as the level of difficulty of that topic, as it is inferred by the level of expertise of its main contributors. Our method is based on a novel formulation of Constrained Coupled Matrix-Tensor Factorization, which adopts constraints well-motivated for, and, as we demonstrate, are essential for high-quality topic discovery. We qualitatively evaluate our approach using real data from the Physics and also Programming Stack Exchange forum, and we were able to identify topics of varying levels of difficulty which can be linked to external events, such as the announcement of gravitational waves by the LIGO lab in Physics forum. We provide a quantitative evaluation of our method by conducting a user study where experts were asked to judge the coherence and quality of the extracted topics. Finally, our proposed method has implications for automatic curriculum design using the extracted topics, where the notion of the level of difficulty is necessary for the proper modeling of prerequisites and advanced concepts.


page 1

page 2

page 3

page 4


ATEM: A Topic Evolution Model for the Detection of Emerging Topics in Scientific Archives

This paper presents ATEM, a novel framework for studying topic evolution...

Topic Diffusion Discovery based on Sparseness-constrained Non-negative Matrix Factorization

Due to recent explosion of text data, researchers have been overwhelmed ...

An Online Topic Modeling Framework with Topics Automatically Labeled

In this paper, we propose a novel online topic tracking framework, named...

Recurrent Coupled Topic Modeling over Sequential Documents

The abundant sequential documents such as online archival, social media ...

HTMOT : Hierarchical Topic Modelling Over Time

Over the years, topic models have provided an efficient way of extractin...

Improving Editorial Workflow and Metadata Quality at Springer Nature

Identifying the research topics that best describe the scope of a scient...

Sex, drugs, and violence

Automatically detecting inappropriate content can be a difficult NLP tas...