A Constant Factor Approximation for Navigating Through Connected Obstacles in the Plane

11/29/2020
by   Neeraj Kumar, et al.
0

Given two points s and t in the plane and a set of obstacles defined by closed curves, what is the minimum number of obstacles touched by a path connecting s and t? This is a fundamental and well-studied problem arising naturally in computational geometry, graph theory (under the names Min-Color Path and Minimum Label Path), wireless sensor networks (Barrier Resilience) and motion planning (Minimum Constraint Removal). It remains NP-hard even for very simple-shaped obstacles such as unit-length line segments. In this paper we give the first constant factor approximation algorithm for this problem, resolving an open problem of [Chan and Kirkpatrick, TCS, 2014] and [Bandyapadhyay et al., CGTA, 2020]. We also obtain a constant factor approximation for the Minimum Color Prize Collecting Steiner Forest where the goal is to connect multiple request pairs (s1, t1), . . . ,(sk, tk) while minimizing the number of obstacles touched by any (si, ti) path plus a fixed cost of wi for each pair (si, ti) left disconnected. This generalizes the classic Steiner Forest and Prize-Collecting Steiner Forest problems on planar graphs, for which intricate PTASes are known. In contrast, no PTAS is possible for Min-Color Path even on planar graphs since the problem is known to be APXhard [Eiben and Kanj, TALG, 2020]. Additionally, we show that generalizations of the problem to disconnected obstacles

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro