A concentration theorem for projections

06/27/2012
by   Sanjoy Dasgupta, et al.
0

X in R^D has mean zero and finite second moments. We show that there is a precise sense in which almost all linear projections of X into R^d (for d < D) look like a scale-mixture of spherical Gaussians -- specifically, a mixture of distributions N(0, sigma^2 I_d) where the weight of the particular sigma component is P (| X |^2 = sigma^2 D). The extent of this effect depends upon the ratio of d to D, and upon a particular coefficient of eccentricity of X's distribution. We explore this result in a variety of experiments.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset