A Comprehensive Framework for Dynamic Bike Rebalancing in a Large Bike Sharing Network

06/07/2018
by   Lei Lin, et al.
0

Bike sharing is a vital component of a modern multi-modal transportation system. However, its implementation can lead to bike supply-demand imbalance due to fluctuating spatial and temporal demands. This study proposes a comprehensive framework to develop optimal dynamic bike rebalancing strategies in a large bike sharing network. It consists of three components, including a station-level pick-up/drop-off prediction model, station clustering model, and capacitated location-routing optimization model. For the first component, we propose a powerful deep learning model called graph convolution neural network model (GCNN) with data-driven graph filter (DDGF), which can automatically learn the hidden spatial-temporal correlations among stations to provide more accurate predictions; for the second component, we apply a graph clustering algorithm labeled the Community Detection algorithm to cluster stations that locate geographically close to each other and have a small net demand gap; last, a capacitated location-routing problem (CLRP) is solved to deal with the combination of two types of decision variables: the locations of bike distribution centers and the design of distribution routes for each cluster.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset