A complete formalized knowledge representation model for advanced digital forensics timeline analysis

02/21/2019 ∙ by Yoan Chabot, et al. ∙ 0

Having a clear view of events that occurred over time is a difficult objective to achieve in digital investigations (DI). Event reconstruction, which allows investigators to understand the timeline of a crime, is one of the most important step of a DI process. This complex task requires exploration of a large amount of events due to the pervasiveness of new technologies nowadays. Any evidence produced at the end of the investigative process must also meet the requirements of the courts, such as reproducibility, verifiability, validation, etc. For this purpose, we propose a new methodology, supported by theoretical concepts, that can assist investigators through the whole process including the construction and the interpretation of the events describing the case. The proposed approach is based on a model which integrates knowledge of experts from the fields of digital forensics and software development to allow a semantically rich representation of events related to the incident. The main purpose of this model is to allow the analysis of these events in an automatic and efficient way. This paper describes the approach and then focuses on the main conceptual and formal aspects: a formal incident modelization and operators for timeline reconstruction and analysis.



There are no comments yet.


This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.