A complete and consistent second-order hydrodynamic model for floating structures with large horizontal motions

by   Yanlin Shao, et al.

Floating offshore structures often exhibit low-frequency oscillatory motions in the horizontal plane, with amplitudes in the same order as their characteristic dimensions and larger than the corresponding wave-frequency responses, making the traditional formulations in an inertial coordinate system inconsistent and less applicable. To address this issue, we explore an alternative formulation completely based on a non-inertial body-fixed coordinate system. Unlike the traditional seakeeping models, this formulation consistently allows for large-amplitude horizontal motions. A numerical model based on a higher-order boundary element is applied to solve the resulting boundary-value problems in the time domain. A new set of explicit time-integration methods, which do not necessitate the use of upwind schemes for spatial derivatives, are designed to deal with the convective-type free-surface conditions. To suppress the weak saw-tooth instabilities on the free surface in time marching, we also present novel low-pass filters based on optimized weighted-least-squares, which are in principle applicable for both structured and unstructured meshes. For ship seakeeping and added resistance analyses, we show that the present computational model does not need to use soft-springs for surge and sway, in contrast to the traditional models. For a spar floating offshore wind turbine (FOWT), the importance of consistently taking into account the effects of large horizontal motions is demonstrated considering the bi-chromatic incident waves. The present model is also referred to as a complete 2nd order wave-load model, as all the 2nd order wave loads, including the sum-frequency and difference-frequency components, are solved simultaneously.


Homogenization of the wave equation with non-uniformly oscillating coefficients

The focus of our work is dispersive, second-order effective model descri...

Frequency-robust preconditioning of boundary integral equations for acoustic transmission

The scattering and transmission of harmonic acoustic waves at a penetrab...

Semi-Submersible Wind Turbine Hull Shape Design for a Favorable System Response Behavior

Floating offshore wind turbines are a novel technology, which has reache...

Optimized Runge-Kutta (LDDRK) timestepping schemes for non-constant-amplitude oscillations

Finite differences and Runge-Kutta time stepping schemes used in Computa...

A monolithic Finite Element formulation for the hydroelastic analysis of Very Large Floating Structures

In this work we present a novel monolithic Finite Element Method (FEM) f...