A comparison of nonlinear extensions to the ensemble Kalman filter: Gaussian Anamorphosis and Two-Step Ensemble Filters

07/15/2021
by   Ian Grooms, et al.
0

This paper reviews two nonlinear, non-Gaussian extensions of the Ensemble Kalman Filter: Gaussian anamorphosis (GA) methods and two-step updates, of which the rank histogram filter (RHF) is a prototypical example. GA-EnKF methods apply univariate transforms to the state and observation variables to make their distribution more Gaussian before applying an EnKF. The two-step methods use a scalar Bayesian update for the first step, followed by linear regression for the second step. The connection of the two-step framework to the full Bayesian problem is made, which opens the door to more advanced two-step methods in the full Bayesian setting. A new method for the first part of the two-step framework is proposed, with a similar form to the RHF but a different motivation, called the `improved RHF' (iRHF). A suite of experiments with the Lorenz-`96 model demonstrate situations where the GA-EnKF methods are similar to EnKF, and where they outperform EnKF. The experiments also strongly support the accuracy of the RHF and iRHF filters for nonlinear and non-Gaussian observations; these methods uniformly beat the EnKF and GA-EnKF methods in the experiments reported here. The new iRHF method is only more accurate than RHF at small ensemble sizes in the experiments reported here.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset