A comparison of maximum likelihood and absolute moments for the estimation of Hurst exponents in a stationary framework

by   Matthieu Garcin, et al.

The absolute-moment method is widespread for estimating the Hurst exponent of a fractional Brownian motion X. But this method is biased when applied to a stationary version of X, in particular an inverse Lamperti transform of X, with a linear time contraction of parameter θ. We present an adaptation of the absolute-moment method to this framework and we compare it to the maximum likelihood method, with simulations. The conclusion is mainly in favour of the adapted absolute-moment method for several reasons: it makes it possible to confirm visually that the model is well specified, it is computationally more performing, the estimation of θ is more accurate.


page 1

page 2

page 3

page 4


Maximum likelihood estimation for sub-fractional Vasicek model

We investigate the asymptotic properties of maximum likelihood estimator...

Discrete Teissier distribution: properties, estimation and application

In this article, a discrete analogue of continuous Teissier distribution...

Maximum likelihood estimation for mixed fractional Vasicek processes

The mixed fractional Vasicek model, which is an extended model of the tr...

Estimation of Mittag-Leffler Parameters

We propose a procedure for estimating the parameters of the Mittag-Leffl...

Contrast estimation of general locally stationary processes using coupling

This paper aims at providing statistical guarantees for a kernel based e...

Please sign up or login with your details

Forgot password? Click here to reset