A Comparison of Machine Learning Methods for Data with High-Cardinality Categorical Variables

07/05/2023
by   Fabio Sigrist, et al.
0

High-cardinality categorical variables are variables for which the number of different levels is large relative to the sample size of a data set, or in other words, there are few data points per level. Machine learning methods can have difficulties with high-cardinality variables. In this article, we empirically compare several versions of two of the most successful machine learning methods, tree-boosting and deep neural networks, and linear mixed effects models using multiple tabular data sets with high-cardinality categorical variables. We find that, first, machine learning models with random effects have higher prediction accuracy than their classical counterparts without random effects, and, second, tree-boosting with random effects outperforms deep neural networks with random effects.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset