A comparative study of several parameterizations for speaker recognition

02/24/2022
by   Marcos Faundez-Zanuy, et al.
0

This paper presents an exhaustive study about the robustness of several parameterizations, in speaker verification and identification tasks. We have studied several mismatch conditions: different recording sessions, microphones, and different languages (it has been obtained from a bilingual set of speakers). This study reveals that the combination of several parameterizations can improve the robustness in all the scenarios for both tasks, identification and verification. In addition, two different methods have been evaluated: vector quantization, and covariance matrices with an arithmetic-harmonic sphericity measure.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro