A Compact Representation of Raster Time Series

01/07/2019 ∙ by Nataly Cruces, et al. ∙ University of Concepcion Universidad del Bío-Bío 0

The raster model is widely used in Geographic Information Systems to represent data that vary continuously in space, such as temperatures, precipitations, elevation, among other spatial attributes. In applications like weather forecast systems, not just a single raster, but a sequence of rasters covering the same region at different timestamps, known as a raster time series, needs to be stored and queried. Compact data structures have proven successful to provide space-efficient representations of rasters with query capabilities. Hence, a naive approach to save space is to use such a representation for each raster in a time series. However, in this paper we show that it is possible to take advantage of the temporal locality that exists in a raster time series to reduce the space necessary to store it while keeping competitive query times for several types of queries.

READ FULL TEXT VIEW PDF
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.

References

  • [1] M. Worboys and M. Duckham, GIS: A Computing Perspective.   CRC Press, Inc., 2004.
  • [2] F. Petitjean, P. Gançarski, F. Masseglia, and G. Forestier, Analysing Satellite Image Time Series by Means of Pattern Mining.   Springer Berlin Heidelberg, 2010, pp. 45–52.
  • [3] W. Kou, Digital Image Compression: Algorithms and Standards.   Kluwer Pub., 1995.
  • [4] G. K. Wallace, “The jpeg still picture compression standard,” Commun. ACM, vol. 34, no. 4, pp. 30–44, 1991.
  • [5] D. Salomon, Data Compression: The Complete Reference.   Springer, 2006.
  • [6] G. Navarro, Compact Data Structures: A Practical Approach.   Cambridge University Press., 2016.
  • [7] G. de Bernardo, S. Álvarez-García, N. R. Brisaboa, G. Navarro, and O. Pedreira, “Compact querieable representations of raster data,” in Proc. 20th SPIRE, 2013, pp. 96–108.
  • [8] S. Ladra, J. R. Paramá, and F. Silva-Coira, “Scalable and queryable compressed storage structure for raster data,” Information Systems, vol. 72, pp. 179–204, 2017.
  • [9] A. Pinto, D. Seco, and G. Gutiérrez, “Improved queryable representations of rasters,” in Proc. DCC, 2017, pp. 320–329.
  • [10] G. de Bernardo, “New data structures and algorithms for the efficient management of large spatial datasets,” Ph.D. dissertation, Universidade da Coruña, 2014.
  • [11] N. R. Brisaboa, S. Ladra, and G. Navarro, “Compact representation of web graphs with extended functionality,” Information Systems, pp. 152–174, 2014.
  • [12] S. Gog, T. Beller, A. Moffat, and M. Petri, “From theory to practice: Plug and play with succinct data structures,” in Proc. 13th SEA, 2014, pp. 326–337.
  • [13] H. Samet, Foundations of multidimensional and metric data structures.   Morgan Kaufmann, 2006.
  • [14] H. Sagan, Space-Filling Curves.   Springer, 1994.
  • [15] G. M. Morton, “A computer oriented geodetic data base and a new technique in file sequencing,” Tech. Rep., 1966.
  • [16] G. Proietti, “An optimal algorithm for decomposing a window into maximal quadtree blocks,” Acta Informatica, vol. 36, no. 4, pp. 257–266, 1999.
  • [17] Y.-H. Tsai, K.-L. Chung, and W.-Y. Chen, “A strip-splitting-based optimal algorithm for decomposing a query window into maximal quadtree blocks,” IEEE Trans. on Knowl. and Data Eng., vol. 16, no. 4, pp. 519–523, Apr. 2004.
  • [18] A. Cerdeira-Pena, G. de Bernardo, A. Fariña, J. R. Paramá, and F. Silva-Coira, “Towards a compact representation of temporal rasters,” in Proc. 25th SPIRE, 2018, pp. 117–130.
  • [19] W. R. Tobler, “A computer model simulation of urban growth in the detroit region,” 1970, economic Geography. p.236.
  • [20] N. C. Operations. (2017) Real-time mesoscale analysis (RTMA) products.
  • [21] T. Gagie, J. I. González-Nova, S. Ladra, G. Navarro, and D. Seco, “Faster compressed quadtrees,” in Proc. DCC, 2015, pp. 93–102.