A characterisation of ordered abstract probabilities

by   Abraham Westerbaan, et al.

In computer science, especially when dealing with quantum computing or other non-standard models of computation, basic notions in probability theory like "a predicate" vary wildly. There seems to be one constant: the only useful example of an algebra of probabilities is the real unit interval. In this paper we try to explain this phenomenon. We will show that the structure of the real unit interval naturally arises from a few reasonable assumptions. We do this by studying effect monoids, an abstraction of the algebraic structure of the real unit interval: it has an addition x+y which is only defined when x+y≤ 1 and an involution x 1-x which make it an effect algebra, in combination with an associative (possibly non-commutative) multiplication. Examples include the unit intervals of ordered rings and Boolean algebras. We present a structure theory for effect monoids that are ω-complete, i.e. where every increasing sequence has a supremum. We show that any ω-complete effect monoid embeds into the direct sum of a Boolean algebra and the unit interval of a commutative unital C^*-algebra. This gives us from first principles a dichotomy between sharp logic, represented by the Boolean algebra part of the effect monoid, and probabilistic logic, represented by the commutative C^*-algebra. Some consequences of this characterisation are that the multiplication must always be commutative, and that the unique ω-complete effect monoid without zero divisors and more than 2 elements must be the real unit interval. Our results give an algebraic characterisation and motivation for why any physical or logical theory would represent probabilities by real numbers.


A characterization of ordered abstract probabilities

In computer science, especially when dealing with quantum computing or o...

Dichotomy between deterministic and probabilistic models in countably additive effectus theory

Effectus theory is a relatively new approach to categorical logic that c...

Embedding Kozen-Tiuryn Logic into Residuated One-Sorted Kleene Algebra with Tests

Kozen and Tiuryn have introduced the substructural logic 𝖲 for reasoning...

Boolean algebras of conditionals, probability and logic

This paper presents an investigation on the structure of conditional eve...

Axiomatic (and Non-Axiomatic) Mathematics

Axiomatizing mathematical structures and theories is an objective of Mat...

Mnesors for automatic control

Mnesors are defined as elements of a semimodule over the min-plus intege...

Can Uncertainty Management be Realized in a Finite Totally Ordered Probability Algebra?

In this paper, the feasibility of using finite totally ordered probabili...

Please sign up or login with your details

Forgot password? Click here to reset