A causal inference framework for cancer cluster investigations using publicly available data
Often, a community becomes alarmed when high rates of cancer are noticed, and residents suspect that the cancer cases could be caused by a known source of hazard. In response, the CDC recommends that departments of health perform a standardized incidence ratio (SIR) analysis to determine whether the observed cancer incidence is higher than expected. This approach has several limitations that are well documented in the literature. In this paper we propose a novel causal inference approach to cancer cluster investigations, rooted in the potential outcomes framework. Assuming that a source of hazard representing a potential cause of increased cancer rates in the community is identified a priori, we introduce a new estimand called the causal SIR (cSIR). The cSIR is a ratio defined as the expected cancer incidence in the exposed population divided by the expected cancer incidence under the (counterfactual) scenario of no exposure. To estimate the cSIR we need to overcome two main challenges: 1) identify unexposed populations that are as similar as possible to the exposed one to inform estimation under the counterfactual scenario of no exposure, and 2) make inference on cancer incidence in these unexposed populations using publicly available data that are often available at a much higher level of spatial aggregation than what is desired. We overcome the first challenge by relying on matching. We overcome the second challenge by developing a Bayesian hierarchical model that borrows information from other sources to impute cancer incidence at the desired finer level of spatial aggregation. We apply our proposed approach to determine whether trichloroethylene vapor exposure has caused increased cancer incidence in Endicott, NY.
READ FULL TEXT