A Block Decomposition Algorithm for Sparse Optimization
Sparse optimization is a central problem in machine learning and computer vision. However, this problem is inherently NP-hard and thus difficult to solve in general. Combinatorial search methods find the global optimal solution but are confined to small-sized problems, while coordinate descent methods are efficient but often suffer from poor local minima. This paper considers a new block decomposition algorithm that combines the effectiveness of combinatorial search methods and the efficiency of coordinate descent methods. Specifically, we consider a random strategy or/and a greedy strategy to select a subset of coordinates as the working set, and then perform a global combinatorial search over the working set based on the original objective function. We show that our method finds stronger stationary points than Amir Beck et al.'s coordinate-wise optimization method. In addition, we establish the global convergence and convergence rate of our block decomposition algorithm. Our experiments on solving sparse regularized and sparsity constrained least squares optimization problems demonstrate that our method achieves state-of-the-art performance in terms of accuracy.
READ FULL TEXT