A BIC based Mixture Model Defense against Data Poisoning Attacks on Classifiers

05/28/2021 ∙ by Xi Li, et al. ∙ 0

Data Poisoning (DP) is an effective attack that causes trained classifiers to misclassify their inputs.DP attacks significantly degrade a classifier's accuracy by covertly injecting attack samples into the training set. Broadly applicable to different classifier structures, without strong assumptions about the attacker, we herein propose a novel Bayesian Information Criterion (BIC)-based mixture model defense against DP attacks that: 1) applies a mixture model both to well-fit potentially multi-modal class distributions and to capture adversarial samples within a small subset of mixture components; 2) jointly identifies poisoned components and samples by minimizing the BIC cost over all classes, with the identified poisoned data removed prior to classifier training. Our experimental results, for various classifier structures, demonstrate the effectiveness and universality of our defense under strong DP attacks, as well as the superiority over other works.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.