α Belief Propagation for Approximate Inference

06/27/2020
by   Dong Liu, et al.
9

Belief propagation (BP) algorithm is a widely used message-passing method for inference in graphical models. BP on loop-free graphs converges in linear time. But for graphs with loops, BP's performance is uncertain, and the understanding of its solution is limited. To gain a better understanding of BP in general graphs, we derive an interpretable belief propagation algorithm that is motivated by minimization of a localized α-divergence. We term this algorithm as α belief propagation (α-BP). It turns out that α-BP generalizes standard BP. In addition, this work studies the convergence properties of α-BP. We prove and offer the convergence conditions for α-BP. Experimental simulations on random graphs validate our theoretical results. The application of α-BP to practical problems is also demonstrated.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset