A Bayesian Nonparametric Analysis of the 2003 Outbreak of Highly Pathogenic Avian Influenza in the Netherlands

by   R. G. Seymour, et al.

Infectious diseases on farms pose both public and animal health risks, so understanding how they spread between farms is crucial for developing disease control strategies to prevent future outbreaks. We develop novel Bayesian nonparametric methodology to fit spatial stochastic transmission models in which the infection rate between any two farms is a function that depends on the distance between them, but without assuming a specified parametric form. Making nonparametric inference in this context is challenging since the likelihood function of the observed data is intractable because the underlying transmission process is unobserved. We adopt a fully Bayesian approach by assigning a transformed Gaussian Process prior distribution to the infection rate function, and then develop an efficient data augmentation Markov Chain Monte Carlo algorithm to perform Bayesian inference. We use the posterior predictive distribution to simulate the effect of different disease control methods and their economic impact. We analyse a large outbreak of Avian Influenza in the Netherlands and infer the between-farm infection rate, as well as the unknown infection status of farms which were pre-emptively culled. We use our results to analyse ring-culling strategies, and conclude that although effective, ring-culling has limited impact in high density areas.


page 1

page 2

page 3

page 4


Semiparametric Bayesian Inference for the Transmission Dynamics of COVID-19 with a State-Space Model

The outbreak of Coronavirus Disease 2019 (COVID-19) is an ongoing pandem...

Bayesian Nonparametric Bivariate Survival Regression for Current Status Data

We consider nonparametric inference for event time distributions based o...

A Predictive Approach to Bayesian Nonparametric Survival Analysis

Bayesian nonparametric methods are a popular choice for analysing surviv...

Marginally Constrained Nonparametric Bayesian Inference through Gaussian Processes

Nonparametric Bayesian models are used routinely as flexible and powerfu...

An Interaction Neyman-Scott Point Process Model for Coronavirus Disease-19

With rapid transmission, the coronavirus disease 2019 (COVID-19) has led...

Latent likelihood ratio tests for assessing spatial kernels in epidemic models

One of the most important issues in the critical assessment of spatio-te...

Inferring the sources of HIV infection in Africa from deep sequence data with semi-parametric Bayesian Poisson flow models

Pathogen deep-sequencing is an increasingly routinely used technology in...

Please sign up or login with your details

Forgot password? Click here to reset