A Bayesian Matrix Factorization Model for Relational Data

03/15/2012
by   Ajit P. Singh, et al.
0

Relational learning can be used to augment one data source with other correlated sources of information, to improve predictive accuracy. We frame a large class of relational learning problems as matrix factorization problems, and propose a hierarchical Bayesian model. Training our Bayesian model using random-walk Metropolis-Hastings is impractically slow, and so we develop a block Metropolis-Hastings sampler which uses the gradient and Hessian of the likelihood to dynamically tune the proposal. We demonstrate that a predictive model of brain response to stimuli can be improved by augmenting it with side information about the stimuli.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset