A Bayesian Joint Model for Compositional Mediation Effect Selection in Microbiome Data

09/22/2022
by   Jingyan Fu, et al.
0

Analyzing multivariate count data generated by high-throughput sequencing technology in microbiome research studies is challenging due to the high-dimensional and compositional structure of the data and overdispersion. In practice, researchers are often interested in investigating how the microbiome may mediate the relation between an assigned treatment and an observed phenotypic response. Existing approaches designed for compositional mediation analysis are unable to simultaneously determine the presence of direct effects, marginal indirect effects, overall indirect effects, as well potential confounders, while simultaneously quantifying their uncertainty. We propose a formulation of a Bayesian joint model for compositional data that allows for the identification, estimation, and uncertainty quantification of various causal estimands in high-dimensional mediation analysis. We conduct simulation studies and compare our method's mediation effects selection performance with existing methods. Finally, we apply our method to a benchmark data set investigating the sub-therapeutic antibiotic treatment effect on body weight in early-life mice.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset