A Bayesian Analysis of Migration Pathways using Chain Event Graphs of Agent Based Models
Agent-Based Models (ABMs) are often used to model migration and are increasingly used to simulate individual migrant decision-making and unfolding events through a sequence of heuristic if-then rules. However, ABMs lack the methods to embed more principled strategies of performing inference to estimate and validate the models, both of which are of significant importance for real-world case studies. Chain Event Graphs (CEGs) can fill this need: they can be used to provide a Bayesian framework which represents an ABM accurately. Through the use of the CEG, we illustrate how to transform an elicited ABM into a Bayesian framework and outline the benefits of this approach.
READ FULL TEXT