A 1d convolutional network for leaf and time series classification
In this paper, a 1d convolutional neural network is designed for classification tasks of leaves with centroid contour distance curve (CCDC) as the single feature. With this classifier, simple feature as CCDC shows more discriminating power than people thought previously. The same architecture can also be applied for classifying 1 dimensional time series with little changes. Experiments on some benchmark datasets shows this architecture can provide classification accuracies that are higher than some existing methods. Code for the paper is available at https://github.com/dykuang/Leaf Project.
READ FULL TEXT