5G enabled Mobile Edge Computing security for Autonomous Vehicles
The world is moving into a new era with the deployment of 5G communication infrastructure. Many new developments are deployed centred around this technology. One such advancement is 5G Vehicle to Everything communication. This technology can be used for applications such as driverless delivery of goods, immediate response to emergencies and improving traffic efficiency. The concept of Intelligent Transport Systems (ITS) is built around this system which is completely autonomous. This paper studies the Distributed Denial of Service (DDoS) attack carried out over a 5G network and analyses security attacks, particularly the DDoS attack. The aim is to implement a machine learning model capable of classifying different types of DDoS attacks and predicting the quality of 5G latency. The initial steps of implementation involved the synthetic addition of 5G parameters into the dataset. Subsequently, the data was label encoded, and minority classes were oversampled to match the other classes. Finally, the data was split as training and testing, and machine learning models were applied. Although the paper resulted in a model that predicted DDoS attacks, the dataset acquired significantly lacked 5G related information. Furthermore, the 5G classification model needed more modification. The research was based on largely quantitative research methods in a simulated environment. Hence, the biggest limitation of this research has been the lack of resources for data collection and sole reliance on online data sets. Ideally, a Vehicle to Everything (V2X) project would greatly benefit from an autonomous 5G enabled vehicle connected to a mobile edge cloud. However, this project was conducted solely online on a single PC which further limits the outcomes. Although the model underperformed, this paper can be used as a framework for future research in Intelligent Transport System development.
READ FULL TEXT