3D Human Mesh Regression with Dense Correspondence

06/10/2020
by   Wang Zeng, et al.
0

Estimating 3D mesh of the human body from a single 2D image is an important task with many applications such as augmented reality and Human-Robot interaction. However, prior works reconstructed 3D mesh from global image feature extracted by using convolutional neural network (CNN), where the dense correspondences between the mesh surface and the image pixels are missing, leading to suboptimal solution. This paper proposes a model-free 3D human mesh estimation framework, named DecoMR, which explicitly establishes the dense correspondence between the mesh and the local image features in the UV space (i.e. a 2D space used for texture mapping of 3D mesh). DecoMR first predicts pixel-to-surface dense correspondence map (i.e., IUV image), with which we transfer local features from the image space to the UV space. Then the transferred local image features are processed in the UV space to regress a location map, which is well aligned with transferred features. Finally we reconstruct 3D human mesh from the regressed location map with a predefined mapping function. We also observe that the existing discontinuous UV map are unfriendly to the learning of network. Therefore, we propose a novel UV map that maintains most of the neighboring relations on the original mesh surface. Experiments demonstrate that our proposed local feature alignment and continuous UV map outperforms existing 3D mesh based methods on multiple public benchmarks. Code will be made available at https://github.com/zengwang430521/DecoMR

READ FULL TEXT

page 3

page 4

page 7

page 8

page 12

page 13

page 14

research
11/09/2021

Monocular Human Shape and Pose with Dense Mesh-borne Local Image Features

We propose to improve on graph convolution based approaches for human sh...
research
07/20/2023

Learning Dense UV Completion for Human Mesh Recovery

Human mesh reconstruction from a single image is challenging in the pres...
research
07/13/2022

PyMAF-X: Towards Well-aligned Full-body Model Regression from Monocular Images

We present PyMAF-X, a regression-based approach to recovering a full-bod...
research
05/01/2022

The Best of Both Worlds: Combining Model-based and Nonparametric Approaches for 3D Human Body Estimation

Nonparametric based methods have recently shown promising results in rec...
research
05/18/2022

BodyMap: Learning Full-Body Dense Correspondence Map

Dense correspondence between humans carries powerful semantic informatio...
research
03/30/2021

3D Human Pose and Shape Regression with Pyramidal Mesh Alignment Feedback Loop

Regression-based methods have recently shown promising results in recons...
research
05/03/2019

MeshDepth: Disconnected Mesh-based Deep Depth Prediction

We propose a novel method for mesh-based single-view depth estimation us...

Please sign up or login with your details

Forgot password? Click here to reset