3D CNN-PCA: A Deep-Learning-Based Parameterization for Complex Geomodels
Geological parameterization enables the representation of geomodels in terms of a relatively small set of variables. Parameterization is therefore very useful in the context of data assimilation and uncertainty quantification. In this study, a deep-learning-based geological parameterization algorithm, CNN-PCA, is developed for complex 3D geomodels. CNN-PCA entails the use of convolutional neural networks as a post-processor for the low-dimensional principal component analysis representation of a geomodel. The 3D treatments presented here differ somewhat from those used in the 2D CNN-PCA procedure. Specifically, we introduce a new supervised-learning-based reconstruction loss, which is used in combination with style loss and hard data loss. The style loss uses features extracted from a 3D CNN pretrained for video classification. The 3D CNN-PCA algorithm is applied for the generation of conditional 3D realizations, defined on 60×60×40 grids, for three geological scenarios (binary and bimodal channelized systems, and a three-facies channel-levee-mud system). CNN-PCA realizations are shown to exhibit geological features that are visually consistent with reference models generated using object-based methods. Statistics of flow responses (P_10, P_50, P_90 percentile results) for test sets of 3D CNN-PCA models are shown to be in consistent agreement with those from reference geomodels. Lastly, CNN-PCA is successfully applied for history matching with ESMDA for the bimodal channelized system.
READ FULL TEXT