18.8 Gbps real-time quantum random number generator with a photonic integrated chip

05/28/2021 ∙ by Bing Bai, et al. ∙ 0

Quantum random number generators (QRNGs) can produce true random numbers. Yet, the two most important QRNG parameters highly desired for practical applications, i.e., speed and size, have to be compromised during implementations. Here, we present the fastest and miniaturized QRNG with a record real-time output rate as high as 18.8 Gbps by combining a photonic integrated chip and the technology of optimized randomness extraction. We assemble the photonic integrated circuit designed for vacuum state QRNG implementation, InGaAs homodyne detector and high-bandwidth transimpedance amplifier into a single chip using hybrid packaging, which exhibits the excellent characteristics of integration and high-frequency response. With a sample rate of 2.5 GSa/s in a 10-bit analog-to-digital converter and subsequent paralleled postprocessing in a field programmable gate array, the QRNG outputs ultrafast random bitstreams via a fiber optic transceiver, whose real-time speed is validated in a personal computer.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

page 5

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.