Yuyang Wang

is this you? claim profile


  • Deep Factors for Forecasting

    Producing probabilistic forecasts for large collections of similar and/or dependent time series is a practically relevant and challenging task. Classical time series models fail to capture complex patterns in the data, and multivariate techniques struggle to scale to large problem sizes. Their reliance on strong structural assumptions makes them data-efficient, and allows them to provide uncertainty estimates. The converse is true for models based on deep neural networks, which can learn complex patterns and dependencies given enough data. In this paper, we propose a hybrid model that incorporates the benefits of both approaches. Our new method is data-driven and scalable via a latent, global, deep component. It also handles uncertainty through a local classical model. We provide both theoretical and empirical evidence for the soundness of our approach through a necessary and sufficient decomposition of exchangeable time series into a global and a local part. Our experiments demonstrate the advantages of our model both in term of data efficiency, accuracy and computational complexity.

    05/28/2019 ∙ by Yuyang Wang, et al. ∙ 6 share

    read it

  • Approximate Bayesian Inference in Linear State Space Models for Intermittent Demand Forecasting at Scale

    We present a scalable and robust Bayesian inference method for linear state space models. The method is applied to demand forecasting in the context of a large e-commerce platform, paying special attention to intermittent and bursty target statistics. Inference is approximated by the Newton-Raphson algorithm, reduced to linear-time Kalman smoothing, which allows us to operate on several orders of magnitude larger problems than previous related work. In a study on large real-world sales datasets, our method outperforms competing approaches on fast and medium moving items.

    09/22/2017 ∙ by Matthias Seeger, et al. ∙ 0 share

    read it

  • Online Learning with Pairwise Loss Functions

    Efficient online learning with pairwise loss functions is a crucial component in building large-scale learning system that maximizes the area under the Receiver Operator Characteristic (ROC) curve. In this paper we investigate the generalization performance of online learning algorithms with pairwise loss functions. We show that the existing proof techniques for generalization bounds of online algorithms with a univariate loss can not be directly applied to pairwise losses. In this paper, we derive the first result providing data-dependent bounds for the average risk of the sequence of hypotheses generated by an arbitrary online learner in terms of an easily computable statistic, and show how to extract a low risk hypothesis from the sequence. We demonstrate the generality of our results by applying it to two important problems in machine learning. First, we analyze two online algorithms for bipartite ranking; one being a natural extension of the perceptron algorithm and the other using online convex optimization. Secondly, we provide an analysis for the risk bound for an online algorithm for supervised metric learning.

    01/22/2013 ∙ by Yuyang Wang, et al. ∙ 0 share

    read it

  • Nonparametric Bayesian Mixed-effect Model: a Sparse Gaussian Process Approach

    Multi-task learning models using Gaussian processes (GP) have been developed and successfully applied in various applications. The main difficulty with this approach is the computational cost of inference using the union of examples from all tasks. Therefore sparse solutions, that avoid using the entire data directly and instead use a set of informative "representatives" are desirable. The paper investigates this problem for the grouped mixed-effect GP model where each individual response is given by a fixed-effect, taken from one of a set of unknown groups, plus a random individual effect function that captures variations among individuals. Such models have been widely used in previous work but no sparse solutions have been developed. The paper presents the first sparse solution for such problems, showing how the sparse approximation can be obtained by maximizing a variational lower bound on the marginal likelihood, generalizing ideas from single-task Gaussian processes to handle the mixed-effect model as well as grouping. Experiments using artificial and real data validate the approach showing that it can recover the performance of inference with the full sample, that it outperforms baseline methods, and that it outperforms state of the art sparse solutions for other multi-task GP formulations.

    11/28/2012 ∙ by Yuyang Wang, et al. ∙ 0 share

    read it

  • Infinite Shift-invariant Grouped Multi-task Learning for Gaussian Processes

    Multi-task learning leverages shared information among data sets to improve the learning performance of individual tasks. The paper applies this framework for data where each task is a phase-shifted periodic time series. In particular, we develop a novel Bayesian nonparametric model capturing a mixture of Gaussian processes where each task is a sum of a group-specific function and a component capturing individual variation, in addition to each task being phase shifted. We develop an efficient em algorithm to learn the parameters of the model. As a special case we obtain the Gaussian mixture model and em algorithm for phased-shifted periodic time series. Furthermore, we extend the proposed model by using a Dirichlet Process prior and thereby leading to an infinite mixture model that is capable of doing automatic model selection. A Variational Bayesian approach is developed for inference in this model. Experiments in regression, classification and class discovery demonstrate the performance of the proposed models using both synthetic data and real-world time series data from astrophysics. Our methods are particularly useful when the time series are sparsely and non-synchronously sampled.

    03/05/2012 ∙ by Yuyang Wang, et al. ∙ 0 share

    read it

  • Gini-regularized Optimal Transport with an Application to Spatio-Temporal Forecasting

    Rapidly growing product lines and services require a finer-granularity forecast that considers geographic locales. However the open question remains, how to assess the quality of a spatio-temporal forecast? In this manuscript we introduce a metric to evaluate spatio-temporal forecasts. This metric is based on an Opti- mal Transport (OT) problem. The metric we propose is a constrained OT objec- tive function using the Gini impurity function as a regularizer. We demonstrate through computer experiments both the qualitative and the quantitative charac- teristics of the Gini regularized OT problem. Moreover, we show that the Gini regularized OT problem converges to the classical OT problem, when the Gini regularized problem is considered as a function of λ, the regularization parame-ter. The convergence to the classical OT solution is faster than the state-of-the-art Entropic-regularized OT[Cuturi, 2013] and results in a numerically more stable algorithm.

    12/07/2017 ∙ by Lucas Roberts, et al. ∙ 0 share

    read it

  • MmWave Beam Prediction with Situational Awareness: A Machine Learning Approach

    Millimeter-wave communication is a challenge in the highly mobile vehicular context. Traditional beam training is inadequate in satisfying low overheads and latency. In this paper, we propose to combine machine learning tools and situational awareness to learn the beam information (power, optimal beam index, etc) from past observations. We consider forms of situational awareness that are specific to the vehicular setting including the locations of the receiver and the surrounding vehicles. We leverage regression models to predict the received power with different beam power quantizations. The result shows that situational awareness can largely improve the prediction accuracy and the model can achieve throughput with little performance loss with almost zero overhead.

    05/23/2018 ∙ by Yuyang Wang, et al. ∙ 0 share

    read it

  • Deep Factors with Gaussian Processes for Forecasting

    A large collection of time series poses significant challenges for classical and neural forecasting approaches. Classical time series models fail to fit data well and to scale to large problems, but succeed at providing uncertainty estimates. The converse is true for deep neural networks. In this paper, we propose a hybrid model that incorporates the benefits of both approaches. Our new method is data-driven and scalable via a latent, global, deep component. It also handles uncertainty through a local classical Gaussian Process model. Our experiments demonstrate that our method obtains higher accuracy than state-of-the-art methods.

    11/30/2018 ∙ by Danielle C. Maddix, et al. ∙ 0 share

    read it

  • GluonTS: Probabilistic Time Series Models in Python

    We introduce Gluon Time Series (GluonTS)[<https://gluon-ts.mxnet.io>], a library for deep-learning-based time series modeling. GluonTS simplifies the development of and experimentation with time series models for common tasks such as forecasting or anomaly detection. It provides all necessary components and tools that scientists need for quickly building new models, for efficiently running and analyzing experiments and for evaluating model accuracy.

    06/12/2019 ∙ by Alexander Alexandrov, et al. ∙ 0 share

    read it