Xiao-Jun Zeng

is this you? claim profile


  • An Integrated Optimization + Learning Approach to Optimal Dynamic Pricing for the Retailer with Multi-type Customers in Smart Grids

    In this paper, we consider a realistic and meaningful scenario in the context of smart grids where an electricity retailer serves three different types of customers, i.e., customers with an optimal home energy management system embedded in their smart meters (C-HEMS), customers with only smart meters (C-SM), and customers without smart meters (C-NONE). The main objective of this paper is to support the retailer to make optimal day-ahead dynamic pricing decisions in such a mixed customer pool. To this end, we propose a two-level decision-making framework where the retailer acting as upper-level agent firstly announces its electricity prices of next 24 hours and customers acting as lower-level agents subsequently schedule their energy usages accordingly. For the lower level problem, we model the price responsiveness of different customers according to their unique characteristics. For the upper level problem, we optimize the dynamic prices for the retailer to maximize its profit subject to realistic market constraints. The above two-level model is tackled by genetic algorithms (GAs) based distributed optimization methods while its feasibility and effectiveness are confirmed via simulation results.

    12/18/2016 ∙ by Fanlin Meng, et al. ∙ 0 share

    read it

  • A novel dynamic asset allocation system using Feature Saliency Hidden Markov models for smart beta investing

    The financial crisis of 2008 generated interest in more transparent, rules-based strategies for portfolio construction, with Smart beta strategies emerging as a trend among institutional investors. While they perform well in the long run, these strategies often suffer from severe short-term drawdown (peak-to-trough decline) with fluctuating performance across cycles. To address cyclicality and underperformance, we build a dynamic asset allocation system using Hidden Markov Models (HMMs). We test our system across multiple combinations of smart beta strategies and the resulting portfolios show an improvement in risk-adjusted returns, especially on more return oriented portfolios (up to 50% in excess of market annually). In addition, we propose a novel smart beta allocation system based on the Feature Saliency HMM (FSHMM) algorithm that performs feature selection simultaneously with the training of the HMM, to improve regime identification. We evaluate our systematic trading system with real life assets using MSCI indices; further, the results (up to 60% in excess of market annually) show model performance improvement with respect to portfolios built using full feature HMMs.

    02/28/2019 ∙ by Elizabeth Fons, et al. ∙ 0 share

    read it