Ran He

is this you? claim profile

0 followers

Project Professor at National Lab. of Pattern Recognition (NLPR), Institute of Automation, Chinese Academy of Science (CASIA

  • Cross-spectral Face Completion for NIR-VIS Heterogeneous Face Recognition

    Near infrared-visible (NIR-VIS) heterogeneous face recognition refers to the process of matching NIR to VIS face images. Current heterogeneous methods try to extend VIS face recognition methods to the NIR spectrum by synthesizing VIS images from NIR images. However, due to self-occlusion and sensing gap, NIR face images lose some visible lighting contents so that they are always incomplete compared to VIS face images. This paper models high resolution heterogeneous face synthesis as a complementary combination of two components, a texture inpainting component and pose correction component. The inpainting component synthesizes and inpaints VIS image textures from NIR image textures. The correction component maps any pose in NIR images to a frontal pose in VIS images, resulting in paired NIR and VIS textures. A warping procedure is developed to integrate the two components into an end-to-end deep network. A fine-grained discriminator and a wavelet-based discriminator are designed to supervise intra-class variance and visual quality respectively. One UV loss, two adversarial losses and one pixel loss are imposed to ensure synthesis results. We demonstrate that by attaching the correction component, we can simplify heterogeneous face synthesis from one-to-many unpaired image translation to one-to-one paired image translation, and minimize spectral and pose discrepancy during heterogeneous recognition. Extensive experimental results show that our network not only generates high-resolution VIS face images and but also facilitates the accuracy improvement of heterogeneous face recognition.

    02/10/2019 ∙ by Ran He, et al. ∙ 16 share

    read it

  • IntroVAE: Introspective Variational Autoencoders for Photographic Image Synthesis

    We present a novel introspective variational autoencoder (IntroVAE) model for synthesizing high-resolution photographic images. IntroVAE is capable of self-evaluating the quality of its generated samples and improving itself accordingly. Its inference and generator models are jointly trained in an introspective way. On one hand, the generator is required to reconstruct the input images from the noisy outputs of the inference model as normal VAEs. On the other hand, the inference model is encouraged to classify between the generated and real samples while the generator tries to fool it as GANs. These two famous generative frameworks are integrated in a simple yet efficient single-stream architecture that can be trained in a single stage. IntroVAE preserves the advantages of VAEs, such as stable training and nice latent manifold. Unlike most other hybrid models of VAEs and GANs, IntroVAE requires no extra discriminators, because the inference model itself serves as a discriminator to distinguish between the generated and real samples. Experiments demonstrate that our method produces high-resolution photo-realistic images (e.g., CELEBA images at 1024^2), which are comparable to or better than the state-of-the-art GANs.

    07/17/2018 ∙ by Huaibo Huang, et al. ∙ 10 share

    read it

  • High Fidelity Face Manipulation with Extreme Pose and Expression

    Face manipulation has shown remarkable advances with the flourish of Generative Adversarial Networks. However, due to the difficulties of controlling the structure and texture in high-resolution, it is challenging to simultaneously model pose and expression during manipulation. In this paper, we propose a novel framework that simplifies face manipulation with extreme pose and expression into two correlated stages: a boundary prediction stage and a disentangled face synthesis stage. In the first stage, we propose to use a boundary image for joint pose and expression modeling. An encoder-decoder network is employed to predict the boundary image of the target face in a semi-supervised way. Pose and expression estimators are used to improve the prediction accuracy. In the second stage, the predicted boundary image and the original face are encoded into the structure and texture latent space by two encoder networks respectively. A proxy network and a feature threshold loss are further imposed as constraints to disentangle the latent space. In addition, we build up a new high quality Multi-View Face (MVF-HQ) database that contains 120K high-resolution face images of 479 identities with pose and expression variations, which will be released soon. Qualitative and quantitative experiments on four databases show that our method pushes forward the advance of extreme face manipulation from 128 × 128 resolution to 1024 × 1024 resolution, and significantly improves the face recognition performance under large poses.

    03/28/2019 ∙ by Chaoyou Fu, et al. ∙ 10 share

    read it

  • Variational Capsules for Image Analysis and Synthesis

    A capsule is a group of neurons whose activity vector models different properties of the same entity. This paper extends the capsule to a generative version, named variational capsules (VCs). Each VC produces a latent variable for a specific entity, making it possible to integrate image analysis and image synthesis into a unified framework. Variational capsules model an image as a composition of entities in a probabilistic model. Different capsules' divergence with a specific prior distribution represents the presence of different entities, which can be applied in image analysis tasks such as classification. In addition, variational capsules encode multiple entities in a semantically-disentangling way. Diverse instantiations of capsules are related to various properties of the same entity, making it easy to generate diverse samples with fine-grained semantic attributes. Extensive experiments demonstrate that deep networks designed with variational capsules can not only achieve promising performance on image analysis tasks (including image classification and attribute prediction) but can also improve the diversity and controllability of image synthesis.

    07/11/2018 ∙ by Huaibo Huang, et al. ∙ 6 share

    read it

  • Geometry-Aware Face Completion and Editing

    Face completion is a challenging generation task because it requires generating visually pleasing new pixels that are semantically consistent with the unmasked face region. This paper proposes a geometry-aware Face Completion and Editing NETwork (FCENet) by systematically studying facial geometry from the unmasked region. Firstly, a facial geometry estimator is learned to estimate facial landmark heatmaps and parsing maps from the unmasked face image. Then, an encoder-decoder structure generator serves to complete a face image and disentangle its mask areas conditioned on both the masked face image and the estimated facial geometry images. Besides, since low-rank property exists in manually labeled masks, a low-rank regularization term is imposed on the disentangled masks, enforcing our completion network to manage occlusion area with various shape and size. Furthermore, our network can generate diverse results from the same masked input by modifying estimated facial geometry, which provides a flexible mean to edit the completed face appearance. Extensive experimental results qualitatively and quantitatively demonstrate that our network is able to generate visually pleasing face completion results and edit face attributes as well.

    09/09/2018 ∙ by Linsen Song, et al. ∙ 2 share

    read it

  • Global and Local Consistent Wavelet-domain Age Synthesis

    Age synthesis is a challenging task due to the complicated and non-linear transformation in human aging process. Aging information is usually reflected in local facial parts, such as wrinkles at the eye corners. However, these local facial parts contribute less in previous GAN based methods for age synthesis. To address this issue, we propose a Wavelet-domain Global and Local Consistent Age Generative Adversarial Network (WaveletGLCA-GAN), in which one global specific network and three local specific networks are integrated together to capture both global topology information and local texture details of human faces. Different from the most existing methods that modeling age synthesis in image-domain, we adopt wavelet transform to depict the textual information in frequency-domain. under the premise of preserving the identity information, age estimation network and face verification network are employed. Moreover, five types of losses are adopted: 1) adversarial loss aims to generate realistic wavelets; 2) identity preserving loss aims to better preserve identity information; 3) age preserving loss aims to enhance the accuracy of age synthesis; 4) pixel-wise loss aims to preserve the background information of the input face; 5) the total variation regularization aims to remove ghosting artifacts. Our method is evaluated on three face aging datasets, including CACD2000, Morph and FG-NET. Qualitative and quantitative experiments show the superiority of the proposed method over other state-of-the-arts.

    09/20/2018 ∙ by Peipei Li, et al. ∙ 2 share

    read it

  • Attributes Guided Feature Learning for Vehicle Re-identification

    Vehicle Re-ID has recently attracted enthusiastic attention due to its potential applications in smart city and urban surveillance. However, it suffers from large intra-class variation caused by view variations and illumination changes, and inter-class similarity especially for different identities with the similar appearance. To handle these issues, in this paper, we propose a novel deep network architecture, which guided by meaningful attributes including camera views, vehicle types and colors for vehicle Re-ID. In particular, our network is end-to-end trained and contains three subnetworks of deep features embedded by the corresponding attributes (i.e., camera view, vehicle type and vehicle color). Moreover, to overcome the shortcomings of limited vehicle images of different views, we design a view-specified generative adversarial network to generate the multi-view vehicle images. For network training, we annotate the view labels on the VeRi-776 dataset. Note that one can directly adopt the pre-trained view (as well as type and color) subnetwork on the other datasets with only ID information, which demonstrates the generalization of our model. Extensive experiments on the benchmark datasets VeRi-776 and VehicleID suggest that the proposed approach achieves the promising performance and yields to a new state-of-the-art for vehicle Re-ID.

    05/22/2019 ∙ by Aihua Zheng, et al. ∙ 2 share

    read it

  • Masquer Hunter: Adversarial Occlusion-aware Face Detection

    Occluded face detection is a challenging detection task due to the large appearance variations incurred by various real-world occlusions. This paper introduces an Adversarial Occlusion-aware Face Detector (AOFD) by simultaneously detecting occluded faces and segmenting occluded areas. Specifically, we employ an adversarial training strategy to generate occlusion-like face features that are difficult for a face detector to recognize. Occlusion mask is predicted simultaneously while detecting occluded faces and the occluded area is utilized as an auxiliary instead of being regarded as a hindrance. Moreover, the supervisory signals from the segmentation branch will reversely affect the features, aiding in detecting heavily-occluded faces accordingly. Consequently, AOFD is able to find the faces with few exposed facial landmarks with very high confidences and keeps high detection accuracy even for masked faces. Extensive experiments demonstrate that AOFD not only significantly outperforms state-of-the-art methods on the MAFA occluded face detection dataset, but also achieves competitive detection accuracy on benchmark dataset for general face detection such as FDDB.

    09/15/2017 ∙ by Yujia Chen, et al. ∙ 0 share

    read it

  • Adversarial Discriminative Heterogeneous Face Recognition

    The gap between sensing patterns of different face modalities remains a challenging problem in heterogeneous face recognition (HFR). This paper proposes an adversarial discriminative feature learning framework to close the sensing gap via adversarial learning on both raw-pixel space and compact feature space. This framework integrates cross-spectral face hallucination and discriminative feature learning into an end-to-end adversarial network. In the pixel space, we make use of generative adversarial networks to perform cross-spectral face hallucination. An elaborate two-path model is introduced to alleviate the lack of paired images, which gives consideration to both global structures and local textures. In the feature space, an adversarial loss and a high-order variance discrepancy loss are employed to measure the global and local discrepancy between two heterogeneous distributions respectively. These two losses enhance domain-invariant feature learning and modality independent noise removing. Experimental results on three NIR-VIS databases show that our proposed approach outperforms state-of-the-art HFR methods, without requiring of complex network or large-scale training dataset.

    09/12/2017 ∙ by Lingxiao Song, et al. ∙ 0 share

    read it

  • Joint Adaptive Neighbours and Metric Learning for Multi-view Subspace Clustering

    Due to the existence of various views or representations in many real-world data, multi-view learning has drawn much attention recently. Multi-view spectral clustering methods based on similarity matrixes or graphs are pretty popular. Generally, these algorithms learn informative graphs by directly utilizing original data. However, in the real-world applications, original data often contain noises and outliers that lead to unreliable graphs. In addition, different views may have different contributions to data clustering. In this paper, a novel Multiview Subspace Clustering method unifying Adaptive neighbours and Metric learning (MSCAM), is proposed to address the above problems. In this method, we use the subspace representations of different views to adaptively learn a consensus similarity matrix, uncovering the subspace structure and avoiding noisy nature of original data. For all views, we also learn different Mahalanobis matrixes that parameterize the squared distances and consider the contributions of different views. Further, we constrain the graph constructed by the similarity matrix to have exact c (c is the number of clusters) connected components. An iterative algorithm is developed to solve this optimization problem. Moreover, experiments on a synthetic dataset and different real-world datasets demonstrate the effectiveness of MSCAM.

    09/12/2017 ∙ by Nan Xu, et al. ∙ 0 share

    read it

  • Anti-Makeup: Learning A Bi-Level Adversarial Network for Makeup-Invariant Face Verification

    Makeup is widely used to improve facial attractiveness and is well accepted by the public. However, different makeup styles will result in significant facial appearance changes. It remains a challenging problem to match makeup and non-makeup face images. This paper proposes a learning from generation approach for makeup-invariant face verification by introducing a bi-level adversarial network (BLAN). To alleviate the negative effects from makeup, we first generate non-makeup images from makeup ones, and then use the synthesized non-makeup images for further verification. Two adversarial networks in BLAN are integrated in an end-to-end deep network, with the one on pixel level for reconstructing appealing facial images and the other on feature level for preserving identity information. These two networks jointly reduce the sensing gap between makeup and non-makeup images. Moreover, we make the generator well constrained by incorporating multiple perceptual losses. Experimental results on three benchmark makeup face datasets demonstrate that our method achieves state-of-the-art verification accuracy across makeup status and can produce photo-realistic non-makeup face images.

    09/12/2017 ∙ by Yi Li, et al. ∙ 0 share

    read it