Piotr Mirowski

is this you? claim profile

0

  • The StreetLearn Environment and Dataset

    Navigation is a rich and well-grounded problem domain that drives progress in many different areas of research: perception, planning, memory, exploration, and optimisation in particular. Historically these challenges have been separately considered and solutions built that rely on stationary datasets - for example, recorded trajectories through an environment. These datasets cannot be used for decision-making and reinforcement learning, however, and in general the perspective of navigation as an interactive learning task, where the actions and behaviours of a learning agent are learned simultaneously with the perception and planning, is relatively unsupported. Thus, existing navigation benchmarks generally rely on static datasets (Geiger et al., 2013; Kendall et al., 2015) or simulators (Beattie et al., 2016; Shah et al., 2018). To support and validate research in end-to-end navigation, we present StreetLearn: an interactive, first-person, partially-observed visual environment that uses Google Street View for its photographic content and broad coverage, and give performance baselines for a challenging goal-driven navigation task. The environment code, baseline agent code, and the dataset are available at http://streetlearn.cc

    03/04/2019 ∙ by Piotr Mirowski, et al. ∙ 8 share

    read it

  • Cross-View Policy Learning for Street Navigation

    The ability to navigate from visual observations in unfamiliar environments is a core component of intelligent agents and an ongoing challenge for Deep Reinforcement Learning (RL). Street View can be a sensible testbed for such RL agents, because it provides real-world photographic imagery at ground level, with diverse street appearances; it has been made into an interactive environment called StreetLearn and used for research on navigation. However, goal-driven street navigation agents have not so far been able to transfer to unseen areas without extensive retraining, and relying on simulation is not a scalable solution. Since aerial images are easily and globally accessible, we propose instead to train a multi-modal policy on ground and aerial views, then transfer the ground view policy to unseen (target) parts of the city by utilizing aerial view observations. Our core idea is to pair the ground view with an aerial view and to learn a joint policy that is transferable across views. We achieve this by learning a similar embedding space for both views, distilling the policy across views and dropping out visual modalities. We further reformulate the transfer learning paradigm into three stages: 1) cross-modal training, when the agent is initially trained on multiple city regions, 2) aerial view-only adaptation to a new area, when the agent is adapted to a held-out region using only the easily obtainable aerial view, and 3) ground view-only transfer, when the agent is tested on navigation tasks on unseen ground views, without aerial imagery. Experimental results suggest that the proposed cross-view policy learning enables better generalization of the agent and allows for more effective transfer to unseen environments.

    06/13/2019 ∙ by Ang Li, et al. ∙ 5 share

    read it

  • Learning To Follow Directions in Street View

    Navigating and understanding the real world remains a key challenge in machine learning and inspires a great variety of research in areas such as language grounding, planning, navigation and computer vision. We propose an instruction-following task that requires all of the above, and which combines the practicality of simulated environments with the challenges of ambiguous, noisy real world data. StreetNav is built on top of Google Street View and provides visually accurate environments representing real places. Agents are given driving instructions which they must learn to interpret in order to successfully navigate in this environment. Since humans equipped with driving instructions can readily navigate in previously unseen cities, we set a high bar and test our trained agents for similar cognitive capabilities. Although deep reinforcement learning (RL) methods are frequently evaluated only on data that closely follow the training distribution, our dataset extends to multiple cities and has a clean train/test separation. This allows for thorough testing of generalisation ability. This paper presents the StreetNav environment and tasks, a set of novel models that establish strong baselines, and analysis of the task and the trained agents.

    03/01/2019 ∙ by Karl Moritz Hermann, et al. ∙ 4 share

    read it

  • Learning to Navigate in Complex Environments

    Learning to navigate in complex environments with dynamic elements is an important milestone in developing AI agents. In this work we formulate the navigation question as a reinforcement learning problem and show that data efficiency and task performance can be dramatically improved by relying on additional auxiliary tasks leveraging multimodal sensory inputs. In particular we consider jointly learning the goal-driven reinforcement learning problem with auxiliary depth prediction and loop closure classification tasks. This approach can learn to navigate from raw sensory input in complicated 3D mazes, approaching human-level performance even under conditions where the goal location changes frequently. We provide detailed analysis of the agent behaviour, its ability to localise, and its network activity dynamics, showing that the agent implicitly learns key navigation abilities.

    11/11/2016 ∙ by Piotr Mirowski, et al. ∙ 0 share

    read it

  • Dependency Recurrent Neural Language Models for Sentence Completion

    Recent work on language modelling has shifted focus from count-based models to neural models. In these works, the words in each sentence are always considered in a left-to-right order. In this paper we show how we can improve the performance of the recurrent neural network (RNN) language model by incorporating the syntactic dependencies of a sentence, which have the effect of bringing relevant contexts closer to the word being predicted. We evaluate our approach on the Microsoft Research Sentence Completion Challenge and show that the dependency RNN proposed improves over the RNN by about 10 points in accuracy. Furthermore, we achieve results comparable with the state-of-the-art models on this task.

    07/05/2015 ∙ by Piotr Mirowski, et al. ∙ 0 share

    read it

  • Improvised Comedy as a Turing Test

    The best improvisational theatre actors can make any scene partner, of any skill level or ability, appear talented and proficient in the art form, and thus "make them shine". To challenge this improvisational paradigm, we built an artificial intelligence (AI) trained to perform live shows alongside human actors for human audiences. Over the course of 30 performances to a combined audience of almost 3000 people, we have refined theatrical games which involve combinations of human and (at times, adversarial) AI actors. We have developed specific scene structures to include audience participants in interesting ways. Finally, we developed a complete show structure that submitted the audience to a Turing test and observed their suspension of disbelief, which we believe is key for human/non-human theatre co-creation.

    11/23/2017 ∙ by Kory Wallace Mathewson, et al. ∙ 0 share

    read it

  • One-Shot Reinforcement Learning for Robot Navigation with Interactive Replay

    Recently, model-free reinforcement learning algorithms have been shown to solve challenging problems by learning from extensive interaction with the environment. A significant issue with transferring this success to the robotics domain is that interaction with the real world is costly, but training on limited experience is prone to overfitting. We present a method for learning to navigate, to a fixed goal and in a known environment, on a mobile robot. The robot leverages an interactive world model built from a single traversal of the environment, a pre-trained visual feature encoder, and stochastic environmental augmentation, to demonstrate successful zero-shot transfer under real-world environmental variations without fine-tuning.

    11/28/2017 ∙ by Jake Bruce, et al. ∙ 0 share

    read it

  • Unsupervised Predictive Memory in a Goal-Directed Agent

    Animals execute goal-directed behaviours despite the limited range and scope of their sensors. To cope, they explore environments and store memories maintaining estimates of important information that is not presently available. Recently, progress has been made with artificial intelligence (AI) agents that learn to perform tasks from sensory input, even at a human level, by merging reinforcement learning (RL) algorithms with deep neural networks, and the excitement surrounding these results has led to the pursuit of related ideas as explanations of non-human animal learning. However, we demonstrate that contemporary RL algorithms struggle to solve simple tasks when enough information is concealed from the sensors of the agent, a property called "partial observability". An obvious requirement for handling partially observed tasks is access to extensive memory, but we show memory is not enough; it is critical that the right information be stored in the right format. We develop a model, the Memory, RL, and Inference Network (MERLIN), in which memory formation is guided by a process of predictive modeling. MERLIN facilitates the solution of tasks in 3D virtual reality environments for which partial observability is severe and memories must be maintained over long durations. Our model demonstrates a single learning agent architecture that can solve canonical behavioural tasks in psychology and neurobiology without strong simplifying assumptions about the dimensionality of sensory input or the duration of experiences.

    03/28/2018 ∙ by Greg Wayne, et al. ∙ 0 share

    read it

  • Learning to Navigate in Cities Without a Map

    Navigating through unstructured environments is a basic capability of intelligent creatures, and thus is of fundamental interest in the study and development of artificial intelligence. Long-range navigation is a complex cognitive task that relies on developing an internal representation of space, grounded by recognisable landmarks and robust visual processing, that can simultaneously support continuous self-localisation ("I am here") and a representation of the goal ("I am going there"). Building upon recent research that applies deep reinforcement learning to maze navigation problems, we present an end-to-end deep reinforcement learning approach that can be applied on a city scale. Recognising that successful navigation relies on integration of general policies with locale-specific knowledge, we propose a dual pathway architecture that allows locale-specific features to be encapsulated, while still enabling transfer to multiple cities. We present an interactive navigation environment that uses Google StreetView for its photographic content and worldwide coverage, and demonstrate that our learning method allows agents to learn to navigate multiple cities and to traverse to target destinations that may be kilometres away. A video summarizing our research and showing the trained agent in diverse city environments as well as on the transfer task is available at: goo.gl/ESUfho.

    03/31/2018 ∙ by Piotr Mirowski, et al. ∙ 0 share

    read it

  • Learning Deployable Navigation Policies at Kilometer Scale from a Single Traversal

    Model-free reinforcement learning has recently been shown to be effective at learning navigation policies from complex image input. However, these algorithms tend to require large amounts of interaction with the environment, which can be prohibitively costly to obtain on robots in the real world. We present an approach for efficiently learning goal-directed navigation policies on a mobile robot, from only a single coverage traversal of recorded data. The navigation agent learns an effective policy over a diverse action space in a large heterogeneous environment consisting of more than 2km of travel, through buildings and outdoor regions that collectively exhibit large variations in visual appearance, self-similarity, and connectivity. We compare pretrained visual encoders that enable precomputation of visual embeddings to achieve a throughput of tens of thousands of transitions per second at training time on a commodity desktop computer, allowing agents to learn from millions of trajectories of experience in a matter of hours. We propose multiple forms of computationally efficient stochastic augmentation to enable the learned policy to generalise beyond these precomputed embeddings, and demonstrate successful deployment of the learned policy on the real robot without fine tuning, despite environmental appearance differences at test time. The dataset and code required to reproduce these results and apply the technique to other datasets and robots is made publicly available at rl-navigation.github.io/deployable.

    07/11/2018 ∙ by Jake Bruce, et al. ∙ 0 share

    read it

  • Improbotics: Exploring the Imitation Game using Machine Intelligence in Improvised Theatre

    Theatrical improvisation (impro or improv) is a demanding form of live, collaborative performance. Improv is a humorous and playful artform built on an open-ended narrative structure which simultaneously celebrates effort and failure. It is thus an ideal test bed for the development and deployment of interactive artificial intelligence (AI)-based conversational agents, or artificial improvisors. This case study introduces an improv show experiment featuring human actors and artificial improvisors. We have previously developed a deep-learning-based artificial improvisor, trained on movie subtitles, that can generate plausible, context-based, lines of dialogue suitable for theatre (Mathewson and Mirowski 2017). In this work, we have employed it to control what a subset of human actors say during an improv performance. We also give human-generated lines to a different subset of performers. All lines are provided to actors with headphones and all performers are wearing headphones. This paper describes a Turing test, or imitation game, taking place in a theatre, with both the audience members and the performers left to guess who is a human and who is a machine. In order to test scientific hypotheses about the perception of humans versus machines we collect anonymous feedback from volunteer performers and audience members. Our results suggest that rehearsal increases proficiency and possibility to control events in the performance. That said, consistency with real world experience is limited by the interface and the mechanisms used to perform the show. We also show that human-generated lines are shorter, more positive, and have less difficult words with more grammar and spelling mistakes than the artificial improvisor generated lines.

    09/06/2018 ∙ by Kory W. Mathewson, et al. ∙ 0 share

    read it