Oren Katzir

is this you? claim profile


  • DiDA: Disentangled Synthesis for Domain Adaptation

    Unsupervised domain adaptation aims at learning a shared model for two related, but not identical, domains by leveraging supervision from a source domain to an unsupervised target domain. A number of effective domain adaptation approaches rely on the ability to extract discriminative, yet domain-invariant, latent factors which are common to both domains. Extracting latent commonality is also useful for disentanglement analysis, enabling separation between the common and the domain-specific features of both domains. In this paper, we present a method for boosting domain adaptation performance by leveraging disentanglement analysis. The key idea is that by learning to separately extract both the common and the domain-specific features, one can synthesize more target domain data with supervision, thereby boosting the domain adaptation performance. Better common feature extraction, in turn, helps further improve the disentanglement analysis and disentangled synthesis. We show that iterating between domain adaptation and disentanglement analysis can consistently improve each other on several unsupervised domain adaptation tasks, for various domain adaptation backbone models.

    05/21/2018 ∙ by Jinming Cao, et al. ∙ 2 share

    read it

  • Learning to Generate the "Unseen" via Part Synthesis and Composition

    Data-driven generative modeling has made remarkable progress by leveraging the power of deep neural networks. A reoccurring challenge is how to sample a rich variety of data from the entire target distribution, rather than only from the distribution of the training data. In other words, we would like the generative model to go beyond the observed training samples and learn to also generate "unseen" data. In our work, we present a generative neural network for shapes that is based on a part-based prior, where the key idea is for the network to synthesize shapes by varying both the shape parts and their compositions. Treating a shape not as an unstructured whole, but as a (re-)composable set of deformable parts, adds a combinatorial dimension to the generative process to enrich the diversity of the output, encouraging the generator to venture more into the "unseen". We show that our part-based model generates richer variety of feasible shapes compared with a baseline generative model. To this end, we introduce two quantitative metrics to evaluate the ingenuity of the generative model and assess how well generated data covers both the training data and unseen data from the same target distribution.

    11/19/2018 ∙ by Nadav Schor, et al. ∙ 0 share

    read it

  • Cross-Domain Cascaded Deep Feature Translation

    In recent years we have witnessed tremendous progress in unpaired image-to-image translation methods, propelled by the emergence of DNNs and adversarial training strategies. However, most existing methods focus on transfer of style and appearance, rather than on shape translation. The latter task is challenging, due to its intricate non-local nature, which calls for additional supervision. We mitigate this by descending the deep layers of a pre-trained network, where the deep features contain more semantics, and applying the translation from and between these deep features. Specifically, we leverage VGG, which is a classification network, pre-trained with large-scale semantic supervision. Our translation is performed in a cascaded, deep-to-shallow, fashion, along the deep feature hierarchy: we first translate between the deepest layers that encode the higher-level semantic content of the image, proceeding to translate the shallower layers, conditioned on the deeper ones. We show that our method is able to translate between different domains, which exhibit significantly different shapes. We evaluate our method both qualitatively and quantitatively and compare it to state-of-the-art image-to-image translation methods. Our code and trained models will be made available.

    06/04/2019 ∙ by Oren Katzir, et al. ∙ 0 share

    read it