Freddy Lecue

is this you? claim profile

0

  • Learning from Ontology Streams with Semantic Concept Drift

    Data stream learning has been largely studied for extracting knowledge structures from continuous and rapid data records. In the semantic Web, data is interpreted in ontologies and its ordered sequence is represented as an ontology stream. Our work exploits the semantics of such streams to tackle the problem of concept drift i.e., unexpected changes in data distribution, causing most of models to be less accurate as time passes. To this end we revisited (i) semantic inference in the context of supervised stream learning, and (ii) models with semantic embeddings. The experiments show accurate prediction with data from Dublin and Beijing.

    04/24/2017 ∙ by Freddy Lecue, et al. ∙ 0 share

    read it

  • Semantic Explanations of Predictions

    The main objective of explanations is to transmit knowledge to humans. This work proposes to construct informative explanations for predictions made from machine learning models. Motivated by the observations from social sciences, our approach selects data points from the training sample that exhibit special characteristics crucial for explanation, for instance, ones contrastive to the classification prediction and ones representative of the models. Subsequently, semantic concepts are derived from the selected data points through the use of domain ontologies. These concepts are filtered and ranked to produce informative explanations that improves human understanding. The main features of our approach are that (1) knowledge about explanations is captured in the form of ontological concepts, (2) explanations include contrastive evidences in addition to normal evidences, and (3) explanations are user relevant.

    05/27/2018 ∙ by Freddy Lecue, et al. ∙ 0 share

    read it

  • Knowledge-based Transfer Learning Explanation

    Machine learning explanation can significantly boost machine learning's application in decision making, but the usability of current methods is limited in human-centric explanation, especially for transfer learning, an important machine learning branch that aims at utilizing knowledge from one learning domain (i.e., a pair of dataset and prediction task) to enhance prediction model training in another learning domain. In this paper, we propose an ontology-based approach for human-centric explanation of transfer learning. Three kinds of knowledge-based explanatory evidence, with different granularities, including general factors, particular narrators and core contexts are first proposed and then inferred with both local ontologies and external knowledge bases. The evaluation with US flight data and DBpedia has presented their confidence and availability in explaining the transferability of feature representation in flight departure delay forecasting.

    07/22/2018 ∙ by Jiaoyan Chen, et al. ∙ 0 share

    read it

  • Interpretable Credit Application Predictions With Counterfactual Explanations

    We predict credit applications with off-the-shelf, interchangeable black-box classifiers and we explain single predictions with counterfactual explanations. Counterfactual explanations expose the minimal changes required on the input data to obtain a different result e.g., approved vs rejected application. Despite their effectiveness, counterfactuals are mainly designed for changing an undesired outcome of a prediction i.e. loan rejected. Counterfactuals, however, can be difficult to interpret, especially when a high number of features are involved in the explanation. Our contribution is two-fold: i) we propose positive counterfactuals, i.e. we adapt counterfactual explanations to also explain accepted loan applications, and ii) we propose two weighting strategies to generate more interpretable counterfactuals. Experiments on the HELOC loan applications dataset show that our contribution outperforms the baseline counterfactual generation strategy, by leading to smaller and hence more interpretable counterfactuals.

    11/13/2018 ∙ by Rory Mc Grath, et al. ∙ 0 share

    read it

  • Augmenting Transfer Learning with Semantic Reasoning

    Transfer learning aims at building robust prediction models by transferring knowledge gained from one problem to another. In the semantic Web, learning tasks are enhanced with semantic representations. We exploit their semantics to augment transfer learning by dealing with when to transfer with semantic measurements and what to transfer with semantic embeddings. We further present a general framework that integrates the above measurements and embeddings with existing transfer learning algorithms for higher performance. It has demonstrated to be robust in two real-world applications: bus delay forecasting and air quality forecasting.

    05/31/2019 ∙ by Freddy Lecue, et al. ∙ 0 share

    read it