Donghyeon Cho

is this you? claim profile


  • Preserving Semantic and Temporal Consistency for Unpaired Video-to-Video Translation

    In this paper, we investigate the problem of unpaired video-to-video translation. Given a video in the source domain, we aim to learn the conditional distribution of the corresponding video in the target domain, without seeing any pairs of corresponding videos. While significant progress has been made in the unpaired translation of images, directly applying these methods to an input video leads to low visual quality due to the additional time dimension. In particular, previous methods suffer from semantic inconsistency (i.e., semantic label flipping) and temporal flickering artifacts. To alleviate these issues, we propose a new framework that is composed of carefully-designed generators and discriminators, coupled with two core objective functions: 1) content preserving loss and 2) temporal consistency loss. Extensive qualitative and quantitative evaluations demonstrate the superior performance of the proposed method against previous approaches. We further apply our framework to a domain adaptation task and achieve favorable results.

    08/21/2019 ∙ by KwanYong Park, et al. ∙ 22 share

    read it

  • Weakly- and Self-Supervised Learning for Content-Aware Deep Image Retargeting

    This paper proposes a weakly- and self-supervised deep convolutional neural network (WSSDCNN) for content-aware image retargeting. Our network takes a source image and a target aspect ratio, and then directly outputs a retargeted image. Retargeting is performed through a shift map, which is a pixel-wise mapping from the source to the target grid. Our method implicitly learns an attention map, which leads to a content-aware shift map for image retargeting. As a result, discriminative parts in an image are preserved, while background regions are adjusted seamlessly. In the training phase, pairs of an image and its image-level annotation are used to compute content and structure losses. We demonstrate the effectiveness of our proposed method for a retargeting application with insightful analyses.

    08/09/2017 ∙ by Donghyeon Cho, et al. ∙ 0 share

    read it

  • Two-Phase Learning for Weakly Supervised Object Localization

    Weakly supervised semantic segmentation and localiza- tion have a problem of focusing only on the most important parts of an image since they use only image-level annota- tions. In this paper, we solve this problem fundamentally via two-phase learning. Our networks are trained in two steps. In the first step, a conventional fully convolutional network (FCN) is trained to find the most discriminative parts of an image. In the second step, the activations on the most salient parts are suppressed by inference conditional feedback, and then the second learning is performed to find the area of the next most important parts. By combining the activations of both phases, the entire portion of the tar- get object can be captured. Our proposed training scheme is novel and can be utilized in well-designed techniques for weakly supervised semantic segmentation, salient region detection, and object location prediction. Detailed experi- ments demonstrate the effectiveness of our two-phase learn- ing in each task.

    08/07/2017 ∙ by Dahun Kim, et al. ∙ 0 share

    read it

  • Learning Image Representations by Completing Damaged Jigsaw Puzzles

    In this paper, we explore methods of complicating self-supervised tasks for representation learning. That is, we do severe damage to data and encourage a network to recover them. First, we complicate each of three powerful self-supervised task candidates: jigsaw puzzle, inpainting, and colorization. In addition, we introduce a novel complicated self-supervised task called "Completing damaged jigsaw puzzles" which is puzzles with one piece missing and the other pieces without color. We train a convolutional neural network not only to solve the puzzles, but also generate the missing content and colorize the puzzles. The recovery of the aforementioned damage pushes the network to obtain robust and general-purpose representations. We demonstrate that complicating the self-supervised tasks improves their original versions and that our final task learns more robust and transferable representations compared to the previous methods, as well as the simple combination of our candidate tasks. Our approach achieves state-of-the-art performance in transfer learning on PASCAL classification and semantic segmentation.

    02/06/2018 ∙ by Dahun Kim, et al. ∙ 0 share

    read it

  • LinkNet: Relational Embedding for Scene Graph

    Objects and their relationships are critical contents for image understanding. A scene graph provides a structured description that captures these properties of an image. However, reasoning about the relationships between objects is very challenging and only a few recent works have attempted to solve the problem of generating a scene graph from an image. In this paper, we present a method that improves scene graph generation by explicitly modeling inter-dependency among the entire object instances. We design a simple and effective relational embedding module that enables our model to jointly represent connections among all related objects, rather than focus on an object in isolation. Our method significantly benefits the main part of the scene graph generation task: relationship classification. Using it on top of a basic Faster R-CNN, our model achieves state-of-the-art results on the Visual Genome benchmark. We further push the performance by introducing global context encoding module and geometrical layout encoding module. We validate our final model, LinkNet, through extensive ablation studies, demonstrating its efficacy in scene graph generation.

    11/15/2018 ∙ by Sanghyun Woo, et al. ∙ 0 share

    read it

  • Self-Supervised Video Representation Learning with Space-Time Cubic Puzzles

    Self-supervised tasks such as colorization, inpainting and zigsaw puzzle have been utilized for visual representation learning for still images, when the number of labeled images is limited or absent at all. Recently, this worthwhile stream of study extends to video domain where the cost of human labeling is even more expensive. However, the most of existing methods are still based on 2D CNN architectures that can not directly capture spatio-temporal information for video applications. In this paper, we introduce a new self-supervised task called as Space-Time Cubic Puzzles to train 3D CNNs using large scale video dataset. This task requires a network to arrange permuted 3D spatio-temporal crops. By completing Space-Time Cubic Puzzles, the network learns both spatial appearance and temporal relation of video frames, which is our final goal. In experiments, we demonstrate that our learned 3D representation is well transferred to action recognition tasks, and outperforms state-of-the-art 2D CNN-based competitors on UCF101 and HMDB51 datasets.

    11/24/2018 ∙ by Dahun Kim, et al. ∙ 0 share

    read it

  • Discriminative Feature Learning for Unsupervised Video Summarization

    In this paper, we address the problem of unsupervised video summarization that automatically extracts key-shots from an input video. Specifically, we tackle two critical issues based on our empirical observations: (i) Ineffective feature learning due to flat distributions of output importance scores for each frame, and (ii) training difficulty when dealing with long-length video inputs. To alleviate the first problem, we propose a simple yet effective regularization loss term called variance loss. The proposed variance loss allows a network to predict output scores for each frame with high discrepancy which enables effective feature learning and significantly improves model performance. For the second problem, we design a novel two-stream network named Chunk and Stride Network (CSNet) that utilizes local (chunk) and global (stride) temporal view on the video features. Our CSNet gives better summarization results for long-length videos compared to the existing methods. In addition, we introduce an attention mechanism to handle the dynamic information in videos. We demonstrate the effectiveness of the proposed methods by conducting extensive ablation studies and show that our final model achieves new state-of-the-art results on two benchmark datasets.

    11/24/2018 ∙ by Yunjae Jung, et al. ∙ 0 share

    read it

  • Key Instance Selection for Unsupervised Video Object Segmentation

    This paper proposes key instance selection based on video saliency covering objectness and dynamics for unsupervised video object segmentation (UVOS). Our method takes frames sequentially and extracts object proposals with corresponding masks for each frame. We link objects according to their similarity until the M-th frame and then assign them unique IDs (i.e., instances). Similarity measure takes into account multiple properties such as ReID descriptor, expected trajectory, and semantic co-segmentation result. After M-th frame, we select K IDs based on video saliency and frequency of appearance; then only these key IDs are tracked through the remaining frames. Thanks to these technical contributions, our results are ranked third on the leaderboard of UVOS DAVIS challenge.

    06/18/2019 ∙ by Donghyeon Cho, et al. ∙ 0 share

    read it