Chieh Wu

is this you? claim profile

0 followers

  • Deep Kernel Learning for Clustering

    We propose a deep learning approach for discovering kernels tailored to identifying clusters over sample data. Our neural network produces sample embeddings that are motivated by--and are at least as expressive as--spectral clustering. Our training objective, based on the Hilbert Schmidt Information Criterion, can be optimized via gradient adaptations on the Stiefel manifold, leading to significant acceleration over spectral methods relying on eigendecompositions. Finally, our trained embedding can be directly applied to out-of-sample data. We show experimentally that our approach outperforms several state-of-the-art deep clustering methods, as well as traditional approaches such as k-means and spectral clustering over a broad array of real-life and synthetic datasets.

    08/09/2019 ∙ by Chieh Wu, et al. ∙ 38 share

    read it