Bojian Wu

is this you? claim profile

0

  • Directing DNNs Attention for Facial Attribution Classification using Gradient-weighted Class Activation Mapping

    Deep neural networks (DNNs) have a high accuracy on image classification tasks. However, DNNs trained by such dataset with co-occurrence bias may rely on wrong features while making decisions for classification. It will greatly affect the transferability of pre-trained DNNs. In this paper, we propose an interactive method to direct classifiers paying attentions to the regions that are manually specified by the users, in order to mitigate the influence of co-occurrence bias. We test on CelebA dataset, the pre-trained AlexNet is fine-tuned to focus on the specific facial attributes based on the results of Grad-CAM.

    05/02/2019 ∙ by Xi Yang, et al. ∙ 12 share

    read it

  • Full 3D Reconstruction of Transparent Objects

    Numerous techniques have been proposed for reconstructing 3D models for opaque objects in past decades. However, none of them can be directly applied to transparent objects. This paper presents a fully automatic approach for reconstructing complete 3D shapes of transparent objects. Through positioning an object on a turntable, its silhouettes and light refraction paths under different viewing directions are captured. Then, starting from an initial rough model generated from space carving, our algorithm progressively optimizes the model under three constraints: surface and refraction normal consistency, surface projection and silhouette consistency, and surface smoothness. Experimental results on both synthetic and real objects demonstrate that our method can successfully recover the complex shapes of transparent objects and faithfully reproduce their light refraction properties.

    05/09/2018 ∙ by Bojian Wu, et al. ∙ 0 share

    read it