Andreas Kölsch

is this you? claim profile

0 followers

  • Real-Time Document Image Classification using Deep CNN and Extreme Learning Machines

    This paper presents an approach for real-time training and testing for document image classification. In production environments, it is crucial to perform accurate and (time-)efficient training. Existing deep learning approaches for classifying documents do not meet these requirements, as they require much time for training and fine-tuning the deep architectures. Motivated from Computer Vision, we propose a two-stage approach. The first stage trains a deep network that works as feature extractor and in the second stage, Extreme Learning Machines (ELMs) are used for classification. The proposed approach outperforms all previously reported structural and deep learning based methods with a final accuracy of 83.24 leading to a relative error reduction of 25 Convolutional Neural Network (CNN) based approach (DeepDocClassifier). More importantly, the training time of the ELM is only 1.176 seconds and the overall prediction time for 2,482 images is 3.066 seconds. As such, this novel approach makes deep learning-based document classification suitable for large-scale real-time applications.

    11/03/2017 ∙ by Andreas Kölsch, et al. ∙ 0 share

    read it

  • Multilevel Context Representation for Improving Object Recognition

    In this work, we propose the combined usage of low- and high-level blocks of convolutional neural networks (CNNs) for improving object recognition. While recent research focused on either propagating the context from all layers, e.g. ResNet, (including the very low-level layers) or having multiple loss layers (e.g. GoogLeNet), the importance of the features close to the higher layers is ignored. This paper postulates that the use of context closer to the high-level layers provides the scale and translation invariance and works better than using the top layer only. In particular, we extend AlexNet and GoogLeNet by additional connections in the top n layers. In order to demonstrate the effectiveness of the proposed approach, we evaluated it on the standard ImageNet task. The relative reduction of the classification error is around 1-2 approach is orthogonal to typical test data augmentation techniques, as recently introduced by Szegedy et al. (leading to a runtime reduction of 144 during test time).

    03/19/2017 ∙ by Andreas Kölsch, et al. ∙ 0 share

    read it

  • Recognizing Challenging Handwritten Annotations with Fully Convolutional Networks

    This paper introduces a very challenging dataset of historic German documents and evaluates Fully Convolutional Neural Network (FCNN) based methods to locate handwritten annotations of any kind in these documents. The handwritten annotations can appear in form of underlines and text by using various writing instruments, e.g., the use of pencils makes the data more challenging. We train and evaluate various end-to-end semantic segmentation approaches and report the results. The task is to classify the pixels of documents into two classes: background and handwritten annotation. The best model achieves a mean Intersection over Union (IoU) score of 95.6 presented dataset. We also present a comparison of different strategies used for data augmentation and training on our presented dataset. For evaluation, we use the Layout Analysis Evaluator for the ICDAR 2017 Competition on Layout Analysis for Challenging Medieval Manuscripts.

    04/01/2018 ∙ by Andreas Kölsch, et al. ∙ 0 share

    read it