Nesterov’s Momentum

Momentum also known as Nesterov’s momentum, influences the speed of learning. It causes the model to converge faster to a point of minimal error. Momentum adjusts the size of the next step, the weight update, based on the previous step’s gradient. That is, it takes the gradient’s history and multiplies it. Before each new step, a provisional gradient is calculated by taking partial derivatives from the model, and the hyperparameters are applied to it to produce a new gradient. Momentum influences the gradient your model uses for the next step.