Transforming Sensor Data to the Image Domain for Deep Learning - an Application to Footstep Detection

01/04/2017
by   Monit Shah Singh, et al.
0

Convolutional Neural Networks (CNNs) have become the state-of-the-art in various computer vision tasks, but they are still premature for most sensor data, especially in pervasive and wearable computing. A major reason for this is the limited amount of annotated training data. In this paper, we propose the idea of leveraging the discriminative power of pre-trained deep CNNs on 2-dimensional sensor data by transforming the sensor modality to the visual domain. By three proposed strategies, 2D sensor output is converted into pressure distribution imageries. Then we utilize a pre-trained CNN for transfer learning on the converted imagery data. We evaluate our method on a gait dataset of floor surface pressure mapping. We obtain a classification accuracy of 87.66 10

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset