Topology-Preserving Segmentation Network
Medical image segmentation aims to automatically extract anatomical or pathological structures in the human body. Most objects or regions of interest are of similar patterns. For example, the relative location and the relative size of the lung and the kidney differ little among subjects. Incorporating these morphology rules as prior knowledge into the segmentation model is believed to be an effective way to enhance the accuracy of the segmentation results. Motivated by this, we propose in this work the Topology-Preserving Segmentation Network (TPSN) which can predict segmentation masks with the same topology prescribed for specific tasks. TPSN is a deformation-based model that yields a deformation map through an encoder-decoder architecture to warp the template masks into a target shape approximating the region to segment. Comparing to the segmentation framework based on pixel-wise classification, deformation-based segmentation models that warp a template to enclose the regions are more convenient to enforce geometric constraints. In our framework, we carefully design the ReLU Jacobian regularization term to enforce the bijectivity of the deformation map. As such, the predicted mask by TPSN has the same topology as that of the template prior mask.
READ FULL TEXT